QR分解
据我了解,任意一个矩阵都能进行QR分解。
A
∈
R
m
×
n
A \in \mathbb{R}^{m \times n}
A∈Rm×n,则可以将
A
A
A分解为
Q
、
R
Q、R
Q、R,
A
=
Q
R
A=QR
A=QR,
存在两种分解方式,
-
完全QR分解
其中 Q ∈ R m × m Q \in \mathbb{R}^{m \times m} Q∈Rm×m, R ∈ R m × n R \in \mathbb{R}^{m \times n} R∈Rm×n。
其中虚线框的部分相乘全为0,没有意义,我们可以简化省略掉。 -
约化QR分解
Q ∈ R m × k Q \in \mathbb{R}^{m \times k} Q∈Rm×k, R ∈ R k × n R \in \mathbb{R}^{k \times n} R∈Rk×n。其中 k = m i n ( m , n ) k=min(m,n) k=min(m,n)
我理解到这里就可以了,还有三个求解方法,以后有需要再补。