【矩阵论】2. 矩阵分解——QR分解

矩阵论的所有文章,主要内容参考北航赵迪老师的课件

[注]由于矩阵论对计算机比较重要,所以选修了这门课,但不是专业搞数学的,所以存在很多口语化描述,而且对很多东西理解不是很正确与透彻,欢迎大家指正。我可能间歇性忙,但有空一定会回复修改的。

矩阵论
1. 准备知识——复数域上矩阵,Hermite变换)
1.准备知识——复数域上的内积域正交阵
1.准备知识——Hermite阵,二次型,矩阵合同,正定阵,幂0阵,幂等阵,矩阵的秩
2. 矩阵分解——SVD准备知识——奇异值
2. 矩阵分解——SVD
2. 矩阵分解——QR分解
2. 矩阵分解——正定阵分解
2. 矩阵分解——单阵谱分解
2. 矩阵分解——正规分解——正规阵
2. 矩阵分解——正规谱分解
2. 矩阵分解——高低分解
3. 矩阵函数——常见解析函数
3. 矩阵函数——谱公式,幂0与泰勒计算矩阵函数
3. 矩阵函数——矩阵函数求导
4. 矩阵运算——观察法求矩阵特征值特征向量
4. 矩阵运算——张量积
4. 矩阵运算——矩阵拉直
4.矩阵运算——广义逆——加号逆定义性质与特殊矩阵的加号逆
4. 矩阵运算——广义逆——加号逆的计算
4. 矩阵运算——广义逆——加号逆应用
4. 矩阵运算——广义逆——减号逆
5. 线性空间与线性变换——线性空间
5. 线性空间与线性变换——生成子空间
5. 线性空间与线性变换——线性映射与自然基分解,线性变换
6. 正规方程与矩阵方程求解
7. 范数理论——基本概念——向量范数与矩阵范数
7.范数理论——基本概念——矩阵范数生成向量范数&谱范不等式
7. 矩阵理论——算子范数
7.范数理论——范数估计——许尔估计&谱估计
7. 范数理论——非负/正矩阵
8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵
8. 常用矩阵总结——镜面阵,正定阵
8. 常用矩阵总结——单阵,正规阵,幂0阵,幂等阵,循环阵


矩阵分解可以得到简化的乘积矩阵,可以简化后续的计算与处理度

在这里插入图片描述

2.2 QR分解

2.2.1 Schmidt正交化

设有3个n阶向量 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3 线性无关
令 β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ∣ β 1 ∣ 2 β 1 β 3 = α 3 − ( α 3 , β 2 ) ∣ β 2 ∣ 2 β 2 − ( α 3 , β 1 ) ∣ β 1 ∣ 2 β 1 \begin{aligned} 令&\beta_1=\alpha_1\\ &\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{\vert \beta_1\vert^2}\beta_1\\ &\beta_3=\alpha_3-\frac{(\alpha_3,\beta_2)}{\vert \beta_2\vert^2}\beta_2-\frac{(\alpha_3,\beta_1)}{\vert \beta_1\vert^2}\beta_1 \end{aligned} β1=α1β2=α2β12(α2,β1)β1β3=α3β22(α3,β2)β2β12(α3,β1)β1

用 Schmidt 正交化方法可构造半U阵 Q = ( β 1 ∣ β 1 ∣ , β 2 ∣ β 2 ∣ , β 3 ∣ β 3 ∣ ) Q=\left(\frac{\beta_1}{\vert \beta_1\vert},\frac{\beta_2}{\vert \beta_2\vert},\frac{\beta_3}{\vert \beta_3\vert}\right) Q=(β1β1,β2β2,β3β3) 是半U阵,可知 Q H Q = I Q^HQ=I QHQ=I

2.2.2 QR分解

a. 定义
高阵

A = ( α 1 , ⋯   , α p ) n × p A=\left(\alpha_1,\cdots,\alpha_p\right)_{n\times p} A=(α1,,αp)n×p 为列无关(高阵),则有分解 A = Q R A=QR A=QR,其中 Q = ( ϵ 1 , ⋯   , ϵ p ) n × p Q=\left(\epsilon_1,\cdots,\epsilon_p \right)_{n\times p} Q=(ϵ1,,ϵp)n×p 为半U阵, R = ( b 1 ∗ ⋱ 0 b p ) R=\left( \begin{matrix} b_1&&*\\ &\ddots&\\ 0&&b_p \end{matrix} \right) R= b10bp 是上三角, 且 b i > 0 b_i>0 bi>0

  • Q阵求法

    由Schmidt公式,产生正交向量组 β 1 , β 2 , ⋯   , β p \beta_1,\beta_2,\cdots,\beta_p β1,β2,,βp ,单位化可得 ϵ 1 = β 1 ∣ β 1 ∣ , ⋯   , ϵ p = β p ∣ β p ∣ \epsilon_1=\frac{\beta_1}{\vert \beta_1\vert},\cdots,\epsilon_p=\frac{\beta_p}{\vert \beta_p\vert} ϵ1=β1β1,,ϵp=βpβp ,则 Q Q Q 是半U阵, Q H Q = I Q^HQ=I QHQ=I

  • R阵求法

    A = Q R A=QR A=QR ,则 Q H A = Q H Q R = R ⇒ R = Q H A Q^HA=Q^HQR=R\Rightarrow R=Q^HA QHA=QHQR=RR=QHA

方阵

任一方阵 A = ( α 1 , ⋯   , α n ) A=\left(\alpha_1,\cdots,\alpha_n\right) A=(α1,,αn) ,有 A = Q R A=QR A=QR ,其中 Q = Q n × n Q=Q_{n\times n} Q=Qn×n 是U阵, R = ( b 1 ∗ ⋱ 0 b p ) R=\left( \begin{matrix} b_1&&*\\ &\ddots&\\ 0&&b_p \end{matrix} \right) R= b10bp 是上三角,且 b i > 0 b_i>0 bi>0

b. QR分解步骤
  1. 先用 Schmidt 公式,求U阵Q或半U阵Q
  2. 在用 R = Q H A R=Q^HA R=QHA,求上三角阵R
  3. 写出分解A=QR

eg
A = ( 1 2 i i 1 i 0 ) = ( α 1 , α 2 ) ,求 Q R 分解 \begin{aligned} &A=\left( \begin{matrix} 1&2i\\ i&1\\ i&0 \end{matrix} \right)=\left(\alpha_1,\alpha_2\right),求QR分解 \end{aligned} A= 1ii2i10 =(α1,α2),求QR分解

β 1 = α 1 = ( 1 i i ) , β 2 = α 2 − ( α 2 , β 1 ) ∣ β 1 ∣ 2 β 1 = 1 3 ( 5 i 4 1 ) ϵ 1 = β 1 ∣ β 1 ∣ = 1 3 ( 1 i i ) , ϵ 2 = β 2 ∣ β 2 ∣ = 1 42 ( 5 i 4 1 ) , 令 Q = ( ϵ 1 , ⋯   , ϵ 2 ) = ( 1 3 5 i 42 i 3 4 42 i 3 1 42 ) 为半 U 阵 R = Q H A = ( 1 3 − i 3 − i 3 − 5 i 42 4 42 1 42 ) A = ( 3 i 3 0 14 3 ) 为上三角 , 可得 A = Q R = ( 1 3 5 i 42 i 3 4 42 i 3 1 42 ) ( 3 i 3 0 14 3 ) \begin{aligned} &\beta_1=\alpha_1=\left( \begin{matrix} 1\\i\\i \end{matrix} \right),\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{\vert \beta_1 \vert^2}\beta_1=\frac{1}{3}\left( \begin{matrix} 5i\\4\\1 \end{matrix} \right)\\ &\epsilon_1=\frac{\beta_1}{\vert \beta_1 \vert}=\frac{1}{\sqrt{3}}\left( \begin{matrix} 1\\i\\i \end{matrix} \right),\epsilon_2=\frac{\beta_2}{\vert \beta_2\vert}=\frac{1}{\sqrt{42}}\left( \begin{matrix} 5i\\4\\1 \end{matrix} \right),\\ &令Q=\left(\epsilon_1,\cdots,\epsilon_2\right)=\left( \begin{matrix} \frac{1}{\sqrt{3}}&\frac{5i}{\sqrt{42}}\\ \frac{i}{3}&\frac{4}{\sqrt{42}}\\ \frac{i}{3}&\frac{1}{\sqrt{42}} \end{matrix} \right)为半U阵\\ &R=Q^HA=\left( \begin{matrix} \frac{1}{\sqrt{3}}&\frac{-i}{3}&\frac{-i}{3}\\ \frac{-5i}{\sqrt{42}}&\frac{4}{\sqrt{42}}&\frac{1}{\sqrt{42}}\\ \end{matrix} \right)A=\left( \begin{matrix} \sqrt{3}&\frac{i}{\sqrt{3}}\\ 0&\frac{\sqrt{14}}{\sqrt{3}} \end{matrix} \right)为上三角,\\ &可得A=QR=\left( \begin{matrix} \frac{1}{\sqrt{3}}&\frac{5i}{\sqrt{42}}\\ \frac{i}{3}&\frac{4}{\sqrt{42}}\\ \frac{i}{3}&\frac{1}{\sqrt{42}} \end{matrix} \right)\left( \begin{matrix} \sqrt{3}&\frac{i}{\sqrt{3}}\\ 0&\frac{\sqrt{14}}{\sqrt{3}} \end{matrix} \right) \end{aligned} β1=α1= 1ii ,β2=α2β12(α2,β1)β1=31 5i41 ϵ1=β1β1=3 1 1ii ,ϵ2=β2β2=42 1 5i41 ,Q=(ϵ1,,ϵ2)= 3 13i3i42 5i42 442 1 为半UR=QHA=(3 142 5i3i42 43i42 1)A=(3 03 i3 14 )为上三角,可得A=QR= 3 13i3i42 5i42 442 1 (3 03 i3 14 )

c. 例题
方阵

A = ( 1 i i 1 ) = ( α 1 , α 2 ) \begin{aligned} &A=\left( \begin{matrix} 1&i\\ i&1 \end{matrix} \right)=\left(\alpha_1,\alpha_2\right) \end{aligned} A=(1ii1)=(α1,α2)

令 β 1 = α 1 = ( 1 i ) , ∣ β 1 ∣ 2 = 2 , ∣ β 1 ∣ = 2 β 2 = α 2 − ( α 2 , β 1 ) ∣ β 1 ∣ 2 β 1 = ( i 1 ) 单位化,令 ϵ 1 = β 1 ∣ β 1 ∣ = 1 2 β 1 , ϵ 2 = β 2 ∣ β 2 ∣ = 1 2 β 2 令 Q = ( ϵ 1 , ϵ 2 ) = ( 1 2 i 2 i 2 1 2 ) , R = Q H A = ( 2 0 0 2 ) 可得 A = Q R = ( 1 2 i 2 i 2 1 2 ) ( 2 0 0 2 ) \begin{aligned} &令\beta_1=\alpha_1=\left( \begin{matrix} 1\\i \end{matrix} \right),\vert \beta_1\vert^2=2,\vert \beta_1\vert=\sqrt{2}\\ &\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{\vert \beta_1\vert^2}\beta_1=\left( \begin{matrix} i\\1 \end{matrix} \right)\\ &单位化,令\epsilon_1=\frac{\beta_1}{\vert \beta_1\vert}=\frac{1}{\sqrt{2}}\beta_1,\epsilon_2=\frac{\beta_2}{\vert \beta_2\vert}=\frac{1}{\sqrt{2}}\beta_2\\ &令Q=\left( \begin{matrix} \epsilon_1,\epsilon_2 \end{matrix} \right)=\left( \begin{matrix} \frac{1}{\sqrt{2}}&\frac{i}{\sqrt{2}}\\ \frac{i}{\sqrt{2}}&\frac{1}{\sqrt{2}} \end{matrix} \right),R=Q^HA=\left( \begin{matrix} \sqrt{2}&0\\ 0&\sqrt{2} \end{matrix} \right)\\ &可得A=QR=\left( \begin{matrix} \frac{1}{\sqrt{2}}&\frac{i}{\sqrt{2}}\\ \frac{i}{\sqrt{2}}&\frac{1}{\sqrt{2}} \end{matrix} \right)\left( \begin{matrix} \sqrt{2}&0\\ 0&\sqrt{2} \end{matrix} \right) \end{aligned} β1=α1=(1i),β12=2,β1=2 β2=α2β12(α2,β1)β1=(i1)单位化,令ϵ1=β1β1=2 1β1,ϵ2=β2β2=2 1β2Q=(ϵ1,ϵ2)=(2 12 i2 i2 1),R=QHA=(2 002 )可得A=QR=(2 12 i2 i2 1)(2 002 )

列高阵

A = ( α 1 , α 2 , α 3 ) = ( 1 − 1 4 1 4 − 2 1 4 2 1 − 1 0 ) 4 × 3 , 求 A = Q R \begin{aligned} &A=\left( \alpha_1,\alpha_2,\alpha_3 \right)=\left( \begin{matrix} 1&-1&4\\ 1&4&-2\\ 1&4&2\\ 1&-1&0 \end{matrix} \right)_{4\times 3},求A=QR \end{aligned} A=(α1,α2,α3)= 111114414220 4×3,A=QR

令 β 1 = α 1 = ( 1 1 1 1 ) , ∣ β 1 ∣ 2 = 4 , ∣ β 1 ∣ = 2 β 2 = α 2 − ( α 2 , β 1 ) ∣ β 1 ∣ 2 β 1 = 5 2 ( − 1 1 1 − 1 ) , ∣ β 2 ∣ = 5 , β 3 = α 3 − ( α 3 , β 2 ) ∣ β 2 ∣ 2 β 2 − ( α 3 , β 1 ) ∣ β 1 ∣ 2 β 1 = 2 ( 1 − 1 1 − 1 ) , ∣ β 3 ∣ = 4 ϵ 1 = β 1 ∣ β 1 ∣ = 1 2 ( 1 1 1 1 ) , ϵ 2 = β 2 ∣ β 2 ∣ = 1 2 ( − 1 1 1 − 1 ) , ϵ 3 = β 3 ∣ β 3 ∣ = 1 2 ( 1 − 1 1 − 1 ) 令 Q = ( ϵ 1 , ϵ 2 , ϵ 3 ) = 1 2 ( 1 − 1 1 1 1 − 1 1 1 1 1 − 1 − 1 ) , 为半 U 阵 . R = Q H A = ( 2 3 2 0 5 − 2 0 0 4 ) 则 A = Q R = 1 2 ( 1 − 1 1 1 1 − 1 1 1 1 1 − 1 − 1 ) ( 2 3 2 0 5 − 2 0 0 4 ) \begin{aligned} &令\beta_1=\alpha_1=\left( \begin{matrix} 1\\1\\1\\1 \end{matrix} \right),\vert \beta_1\vert^2=4,\vert \beta_1\vert=2\\ &\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{\vert \beta_1\vert^2}\beta_1=\frac{5}{2}\left( \begin{matrix} -1\\1\\1\\-1 \end{matrix} \right),\vert \beta_2\vert=5,\\ &\beta_3=\alpha_3-\frac{(\alpha_3,\beta_2)}{\vert \beta_2\vert^2}\beta_2-\frac{(\alpha_3,\beta_1)}{\vert \beta_1\vert^2}\beta_1=2\left( \begin{matrix} 1\\-1\\1\\-1 \end{matrix} \right),\vert \beta_3\vert=4\\ &\epsilon_1=\frac{\beta_1}{\vert \beta_1\vert}=\frac{1}{2}\left( \begin{matrix} 1\\1\\1\\1 \end{matrix} \right),\epsilon_2=\frac{\beta_2}{\vert \beta_2\vert}=\frac{1}{2}\left( \begin{matrix} -1\\1\\1\\-1 \end{matrix} \right),\epsilon_3=\frac{\beta_3}{\vert \beta_3\vert}=\frac{1}{2}\left( \begin{matrix} 1\\-1\\1\\-1 \end{matrix} \right)\\ & 令Q=\left(\epsilon_1,\epsilon_2,\epsilon_3\right)=\frac{1}{2}\left( \begin{matrix} 1&-1&1\\ 1&1&-1\\ 1&1&1\\ 1&-1&-1 \end{matrix} \right),为半U阵.R=Q^HA=\left( \begin{matrix} 2&3&2\\ 0&5&-2\\ 0&0&4 \end{matrix} \right)\\ &则A=QR=\frac{1}{2}\left( \begin{matrix} 1&-1&1\\ 1&1&-1\\ 1&1&1\\ 1&-1&-1 \end{matrix} \right)\left( \begin{matrix} 2&3&2\\ 0&5&-2\\ 0&0&4 \end{matrix} \right) \end{aligned} β1=α1= 1111 ,β12=4,β1=2β2=α2β12(α2,β1)β1=25 1111 ,β2=5,β3=α3β22(α3,β2)β2β12(α3,β1)β1=2 1111 ,β3=4ϵ1=β1β1=21 1111 ,ϵ2=β2β2=21 1111 ,ϵ3=β3β3=21 1111 Q=(ϵ1,ϵ2,ϵ3)=21 111111111111 ,为半U.R=QHA= 200350224 A=QR=21 111111111111 200350224


在这里插入图片描述

d. QR分解证明

有 S c h m i d t 公式,可将 A 的列向量写为 : { β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ∣ β 1 ∣ 2 β 1 ⋮ β p = α p − ( α p , β 1 ) ∣ β 1 ∣ 2 β 1 − ⋯ − ( α p , β p − 1 ) ∣ β p − 1 ∣ 2 β p − 1 可知 α 向量组与 β 向量组可互相表出: { α 1 = β 1 α 2 = ( ∗ ) β 1 + β 2 ⋮ α p = ( ∗ ) β 1 + ( ∗ ) β 2 + ⋯ + β p ⇒ ( α 1 , ⋯   , α p ) = ( β 1 , β 2 , ⋯   , β p ) ( 1 ∗ ⋯ ∗ 0 1 ⋯ ∗ ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ) 若将 β 向量组单位化: ϵ 1 = β 1 ∣ β 1 ∣ , ϵ = β 2 ∣ β 2 ∣ , ⋯   , ϵ p = β p ∣ β p ∣ 则 ( β 1 , β 2 , ⋯   , β p ) = ( ∣ β 1 ∣ ϵ 1 , ∣ β 2 ∣ ϵ 2 , ⋯   , ∣ β p ∣ ϵ p ) = ( ϵ 1 , ϵ 2 , ⋯   , ϵ p ) ( ∣ β 1 ∣ ∣ β 2 ∣ ⋱ ∣ β p ∣ ) 故 A = ( β 1 , β 2 , ⋯   , β p ) ( 1 ∗ ⋯ ∗ 0 1 ⋯ ∗ ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ) = ( ϵ 1 , ϵ 2 , ⋯   , ϵ p ) ( ∣ β 1 ∣ ∣ β 2 ∣ ⋱ ∣ β p ∣ ) ( 1 ∗ ⋯ ∗ 0 1 ⋯ ∗ ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ) = ( ϵ 1 , ϵ 2 , ⋯   , ϵ p ) ( ∣ β 1 ∣ ∗ ⋯ ∗ 0 ∣ β 2 ∣ ⋯ ∗ ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ ∣ β p ∣ ) = Q R \begin{aligned} &有Schmidt公式,可将A的列向量写为:\\ &\left\{ \begin{aligned} &\quad\beta_1=\alpha_1\\ &\quad \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{\vert \beta_1\vert^2}\beta_1\\ &\quad\vdots\\ &\quad\beta_p=\alpha_p-\frac{(\alpha_p,\beta_1)}{\vert \beta_1\vert^2}\beta_1-\cdots-\frac{(\alpha_p,\beta_{p-1})}{\vert \beta_{p-1}\vert^2}\beta_{p-1}\\ \end{aligned} \right.\\ &可知 \alpha向量组与\beta向量组可互相表出:\\ &\left\{ \begin{aligned} &\quad\alpha_1=\beta_1\\ &\quad\alpha_2=(*)\beta_1+\beta_2\\ &\quad\vdots\\ &\quad\alpha_p=(*)\beta_1+(*)\beta_2+\cdots+\beta_p \end{aligned} \right.\\ &\Rightarrow \left(\alpha_1,\cdots,\alpha_p\right)=\left(\beta_1,\beta_2,\cdots,\beta_p\right)\left( \begin{matrix} 1&*&\cdots&*\\ 0&1&\cdots&*\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&1 \end{matrix} \right)\\ &若将\beta向量组单位化:\epsilon_1=\frac{\beta_1}{\vert \beta_1\vert},\epsilon=\frac{\beta_2}{\vert \beta_2\vert},\cdots,\epsilon_p=\frac{\beta_p}{\vert \beta_p\vert}\\ &则\left(\beta_1,\beta_2,\cdots,\beta_p\right)=\left( \vert \beta_1\vert\epsilon_1,\vert \beta_2\vert\epsilon_2,\cdots,\vert \beta_p\vert\epsilon_p \right)\\ &=\left(\epsilon_1,\epsilon_2,\cdots,\epsilon_p\right)\left( \begin{matrix} \vert \beta_1\vert &&\\ &&\vert \beta_2\vert& \\ &&&\ddots&\\ &&&&\vert \beta_p\vert \end{matrix} \right)\\ &故A=\left(\beta_1,\beta_2,\cdots,\beta_p\right)\left( \begin{matrix} 1&*&\cdots&*\\ 0&1&\cdots&*\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&1 \end{matrix} \right)\\ &=\left(\epsilon_1,\epsilon_2,\cdots,\epsilon_p\right)\left( \begin{matrix} \vert \beta_1\vert &&\\ &&\vert \beta_2\vert& \\ &&&\ddots&\\ &&&&\vert \beta_p\vert \end{matrix} \right)\left( \begin{matrix} 1&*&\cdots&*\\ 0&1&\cdots&*\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&1 \end{matrix} \right)\\ &=\left(\epsilon_1,\epsilon_2,\cdots,\epsilon_p\right)\left( \begin{matrix} \vert \beta_1\vert&*&\cdots&*\\ 0&\vert \beta_2\vert&\cdots&*\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&\vert \beta_p\vert \end{matrix} \right)\\ &=QR \end{aligned} Schmidt公式,可将A的列向量写为: β1=α1β2=α2β12(α2,β1)β1βp=αpβ12(αp,β1)β1βp12(αp,βp1)βp1可知α向量组与β向量组可互相表出: α1=β1α2=()β1+β2αp=()β1+()β2++βp(α1,,αp)=(β1,β2,,βp) 100101 若将β向量组单位化:ϵ1=β1β1,ϵ=β2β2,,ϵp=βpβp(β1,β2,,βp)=(β1ϵ1,β2ϵ2,,βpϵp)=(ϵ1,ϵ2,,ϵp) β1β2βp A=(β1,β2,,βp) 100101 =(ϵ1,ϵ2,,ϵp) β1β2βp 100101 =(ϵ1,ϵ2,,ϵp) β100β20βp =QR

e. QR分解的平移性质

若方阵 A n × n A_{n\times n} An×n 不可逆 ( ∣ A ∣ = 0 ) (\vert A\vert =0) (A=0),令 A ϵ = ( A + ϵ I ) , A ϵ A_{\epsilon}=(A+\epsilon I),A_{\epsilon} Aϵ=(A+ϵI),Aϵ 可逆 ⇒ A ϵ = Q ϵ R ϵ \Rightarrow A_\epsilon=Q_\epsilon R_{\epsilon} Aϵ=QϵRϵ ,若 ϵ → 0 ⇒ A = Q R \epsilon\rightarrow 0\Rightarrow A=QR ϵ0A=QR Q Q Q 为U阵, R R R 为上三角阵

  • 10
    点赞
  • 91
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AmosTian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值