abc 388(DEG)

D - Coming of Age Celebration

用一个全局变量cnt维护前面有多少个人给到了当前人,假设当前轮到了第i个人分糖果,那么如果他的糖果数量大于n-i那么可以给到所有人,否则他将在给到第i+a[i]个人的时候就没有糖果了,所以在第i+a[i]个人的时候将cnt--就好了,用b[i]表示有多少人到第i个人时糖果就给完了

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,a[2000000],cnt,b[2000000];
void solve()
{
	cin>>n;
	for(int i=1;i<=n;i++)cin>>a[i];
	for(int i=1;i<=n;i++)
	{
		a[i]+=cnt;
		cout<<max(0ll,a[i]-n+i)<<" ";
		b[i+a[i]]++,cnt++;
		cnt-=b[i];
	}
}
signed main()
{
    cin.tie(0), cout.tie(0), ios::sync_with_stdio(false);
    int T;T=1;
    while(T--)solve();
    return 0;
}

E - Simultaneous Kagamimochi

显然有单调性,于是考虑二分,check函数也是显然的,若二分的是x直接将前x个和后x个逐一对比就行了

#include<bits/stdc++.h>
#define int long long
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const long long N=1e6+10,mod=998244353,INF=1e15;
ll n,m,k,a[N];
bool st[N];
bool check(int x)
{
	for(int i=1;i<=x;i++)if(2*a[i]>a[n-x+i])return 0;return 1;
}
void solve()
{
	cin>>n;
	for(int i=1;i<=n;i++)cin>>a[i];
	sort(a+1,a+1+n);
	int l=0,r=n/2;
	while(l<r)
	{
		int mid=(l+r+1)/2;
		if(check(mid))l=mid;
		else r=mid-1;
	}
	cout<<l<<endl;
}
signed main()
{
    cin.tie(0), cout.tie(0), ios::sync_with_stdio(false);
    int T;T=1;
    while(T--)solve();
    return 0;
}

G - Simultaneous Kagamimochi 2

一道非常好的题目,赛时想假了以为是莫队。。

对于每个i维护一个b[i]表示,距离大于等于自身2倍的数的距离最少是bi,具体的说对于所有属于[i+b[i],n]的j满足a[j]>=2*a[i],然后用线段树去维护b数组的区间最大值,因为不涉及修改操作,所以用st表也是可行的,然后对于每一个查询l,r我们依然是二分答案,假如当前二分的长度是x,我们只需对[l,l+x-1]的b[i]数组查询最大值,表示对于这段区间来说,能和它匹配上的区间最近是多远,如果l+res<=r-x+1表面那个最近的可匹配区间在l,r的范围内,否则就不在

时间复杂度用线段树(nlogn+q(logn)2),st表(nlogn+qlogn)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const long long N=1e6+10,mod=998244353,INF=1e15;
int n,m,k,a[N],b[N];
bool st[N];
struct node
{
	int l,r,mx;
}t[4*N];
void pushup(int u)
{
	t[u].mx=max(t[u<<1].mx,t[u<<1|1].mx);
}
void build(int u,int l,int r)
{
	t[u]={l,r};
	if(l==r)
	{
		t[u].mx=b[l];return;
	}
	int mid=(l+r)/2;
	build(u<<1,l,mid),build(u<<1|1,mid+1,r);
	pushup(u);
}
int query(int u,int l,int r)
{
	if(l<=t[u].l&&t[u].r<=r)return t[u].mx;
	else{
		int mid=(t[u].l+t[u].r)/2;
		int ans=0;
		if(l<=mid)ans=max(ans,query(u<<1,l,r));
		if(r>mid)ans=max(ans,query(u<<1|1,l,r));
		return ans;
	}
}
void solve()
{
	cin>>n;
	for(int i=1;i<=n;i++)cin>>a[i];
	int idx=0;
	for(int i=1;i<=n;i++)
	{
		while(idx<=n+1&&a[idx]<2*a[i])idx++;
		b[i]=idx-i;
	}
	build(1,1,n);
	cin>>m;
	for(int i=1;i<=m;i++)
	{
		int l,r;cin>>l>>r;
		int ll=1,rr=(r-l+1)/2;
		if(2*a[l]>a[r])
		{
			cout<<0<<endl;continue;
		}
		while(ll<rr)
		{
			int mid=(ll+rr+1)/2;
			if(query(1,l,l+mid-1)+l<=r-mid+1)ll=mid;
			else rr=mid-1;
		}
		cout<<ll<<endl;
	}
}
int main()
{
    cin.tie(0), cout.tie(0), ios::sync_with_stdio(false);
    int T;T=1;
    while(T--)solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值