用一个全局变量cnt维护前面有多少个人给到了当前人,假设当前轮到了第i个人分糖果,那么如果他的糖果数量大于n-i那么可以给到所有人,否则他将在给到第i+a[i]个人的时候就没有糖果了,所以在第i+a[i]个人的时候将cnt--就好了,用b[i]表示有多少人到第i个人时糖果就给完了
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,a[2000000],cnt,b[2000000];
void solve()
{
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
for(int i=1;i<=n;i++)
{
a[i]+=cnt;
cout<<max(0ll,a[i]-n+i)<<" ";
b[i+a[i]]++,cnt++;
cnt-=b[i];
}
}
signed main()
{
cin.tie(0), cout.tie(0), ios::sync_with_stdio(false);
int T;T=1;
while(T--)solve();
return 0;
}
显然有单调性,于是考虑二分,check函数也是显然的,若二分的是x直接将前x个和后x个逐一对比就行了
#include<bits/stdc++.h>
#define int long long
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const long long N=1e6+10,mod=998244353,INF=1e15;
ll n,m,k,a[N];
bool st[N];
bool check(int x)
{
for(int i=1;i<=x;i++)if(2*a[i]>a[n-x+i])return 0;return 1;
}
void solve()
{
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
sort(a+1,a+1+n);
int l=0,r=n/2;
while(l<r)
{
int mid=(l+r+1)/2;
if(check(mid))l=mid;
else r=mid-1;
}
cout<<l<<endl;
}
signed main()
{
cin.tie(0), cout.tie(0), ios::sync_with_stdio(false);
int T;T=1;
while(T--)solve();
return 0;
}
G - Simultaneous Kagamimochi 2
一道非常好的题目,赛时想假了以为是莫队。。
对于每个i维护一个b[i]表示,距离大于等于自身2倍的数的距离最少是bi,具体的说对于所有属于[i+b[i],n]的j满足a[j]>=2*a[i],然后用线段树去维护b数组的区间最大值,因为不涉及修改操作,所以用st表也是可行的,然后对于每一个查询l,r我们依然是二分答案,假如当前二分的长度是x,我们只需对[l,l+x-1]的b[i]数组查询最大值,表示对于这段区间来说,能和它匹配上的区间最近是多远,如果l+res<=r-x+1表面那个最近的可匹配区间在l,r的范围内,否则就不在
时间复杂度用线段树(nlogn+q(logn)2),st表(nlogn+qlogn)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const long long N=1e6+10,mod=998244353,INF=1e15;
int n,m,k,a[N],b[N];
bool st[N];
struct node
{
int l,r,mx;
}t[4*N];
void pushup(int u)
{
t[u].mx=max(t[u<<1].mx,t[u<<1|1].mx);
}
void build(int u,int l,int r)
{
t[u]={l,r};
if(l==r)
{
t[u].mx=b[l];return;
}
int mid=(l+r)/2;
build(u<<1,l,mid),build(u<<1|1,mid+1,r);
pushup(u);
}
int query(int u,int l,int r)
{
if(l<=t[u].l&&t[u].r<=r)return t[u].mx;
else{
int mid=(t[u].l+t[u].r)/2;
int ans=0;
if(l<=mid)ans=max(ans,query(u<<1,l,r));
if(r>mid)ans=max(ans,query(u<<1|1,l,r));
return ans;
}
}
void solve()
{
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
int idx=0;
for(int i=1;i<=n;i++)
{
while(idx<=n+1&&a[idx]<2*a[i])idx++;
b[i]=idx-i;
}
build(1,1,n);
cin>>m;
for(int i=1;i<=m;i++)
{
int l,r;cin>>l>>r;
int ll=1,rr=(r-l+1)/2;
if(2*a[l]>a[r])
{
cout<<0<<endl;continue;
}
while(ll<rr)
{
int mid=(ll+rr+1)/2;
if(query(1,l,l+mid-1)+l<=r-mid+1)ll=mid;
else rr=mid-1;
}
cout<<ll<<endl;
}
}
int main()
{
cin.tie(0), cout.tie(0), ios::sync_with_stdio(false);
int T;T=1;
while(T--)solve();
return 0;
}