LEA 通常指的是拉丁超立方抽样进化算法(Latin Hypercube Sampling based Evolutionary Algorithm),以下是关于它的详细介绍:
基本原理
- 拉丁超立方抽样(LHS):这是 LEA 的基础操作之一。LHS 是一种分层抽样方法,它将每个变量的取值范围划分为若干个等概率的区间,然后从每个区间中随机抽取一个样本点,这样可以保证样本在整个取值空间内具有较好的均匀性和代表性,能更有效地探索搜索空间,相比随机抽样能更全面地覆盖变量空间,减少抽样误差。
- 进化算法(EA):借鉴生物进化过程中的遗传、变异、选择等机制。在 LEA 中,通过对种群中的个体进行遗传操作,如交叉和变异,来产生新的个体,模拟生物的进化过程,使种群朝着适应度更高的方向进化。将 LHS 与 EA 相结合,利用 LHS 的抽样优势为 EA 提供更优质的初始种群和搜索方向,提高算法的搜索效率和收敛速度。
算法流程
- 初始化:基于拉丁超立方抽样方法生成初始种群,确保种群中的个体在变量空间中具有良好的分布。
- 适应度评估:根据具体的优化问题,定义适应度函数,计算每个个体的适应度值,以评估个体在当前问题中的优劣程度。
- 选择操作:依据个体的适应度值,采用轮盘赌选择、锦标赛选择等方法,从当前种群中选择出较优的个体,作为父代个体,用于产生下一代。