非支配性排序遗传算法 III(NSGA-III)是用于求解多目标优化问题的一种进化算法1。以下是对它的具体介绍1:
具体完整算法请跳转:非支配性排序遗传算法 III---NSGA-III-可用于(多目标模型融合/特征选择与降维/图像多目标优化处理)
发展背景
NSGA-III 由 Kalyanmoy Deb 和 Harshit Jain 提出,是在 NSGA-II 的基础上进行改进和扩展,以更好地处理多目标优化问题,尤其是在处理高维目标空间时相比传统多目标算法表现更优。
主要特点
- 多目标优化:专门用于处理三种或更多目标函数的优化问题,可同时优化多个相互冲突的目标,找到一组在多个目标上都没有其他解能同时更优的非支配解集。
- 参考点策略:引入了参考点的概念,通过在目标空间中生成固定数量且均匀分布的参考点来引导种群的进化,帮助保持解的多样性,并确保最终解在所有目标上的均匀性。
- 非支配排序:采用非支配排序的方式来评估个体的优劣,个体根据其支配关系被分为不同的等级(前沿),与 NSGA-II 中的非支配排序类似。
- 精英保留:使用精英策略,通过合并父代和子代种群,确保优秀的个体能够在下一代中得到保留,有利于算法更快地收敛到 Pareto 前沿。
- 选择机制优化:选择过程中不仅考虑非支配等级,还引入了与参考点的距离,综合这两个因素来选择更优个体,使得算法能够更好地平衡解的收敛性和多样性。
工作机制
- 种群初始化:随机生成初始种群,每个个体有一组决策变量,并计算其目标函数值,得到个体在目标空间中的表现。
- 生成参考点:根据目标函数的数量,生成均匀分布的参考点,这些参考点在目标空间中为种群的进化提供方向指导。
- 非支配排序:对种群进行非支配排序,确定每个个体的等级(如 F1、F2 等),并构建支配关系,将种群中的个体划分成不同的 Pareto 层级。
- 个体关联:将每个个体与最近的参考点关联,计算个体与参考点之间的距离,以此衡量个体与参考点的接近程度,为选择操作提供依据。
- 选择与繁殖:根据非支配等级和与参考点的距离进行选择,挑选出适应度较高的个体作为父代。然后采用交叉和变异等遗传操作生成新个体(子代),增加种群的多样性和探索能力。
- 更新种群:合并父代和子代,重新进行非支配排序,并使用与参考点的距离来选择最终种群,确保种群中的个体既具有良好的非支配性,又能均匀地分布在参考点周围。
- 迭代:重复执行上述步骤,直到满足终止条件,如达到最大迭代次数、找到满意的 Pareto 前沿或满足收敛条件等。
应用领域
- 工程设计优化:在机械工程、电气工程等领域,用于优化设计参数,如在汽车发动机设计中,同时优化动力输出、燃油经济性和排放等多个目标。
- 资源管理:在资源分配、调度等问题中,帮助合理分配资源,如电力系统中的电力分配,同时考虑发电成本、传输损耗和供电可靠性等目标。
- 路径规划:在物流配送、机器人