智能优化算法- (MGO)-2024-可用于(收敛曲线分析/参数敏感性分析/图像分割算法优化)

 Moss Growth Optimization (MGO)-2024 是一种新型的元启发式智能优化算法,由 Boli Zheng 等人于 2024 年 9 月发表在 SCI 二区期刊《Journal of Computational Design and Engineering》上1。以下是对它的具体介绍1:

智能优化算法- (MGO)-2024-可用于(收敛曲线分析/参数敏感性分析/图像分割算法优化)

灵感来源

算法灵感来源于自然环境中苔藓的生长过程。苔藓作为地球上最古老的陆地植物之一,通常生长在潮湿和阴凉处,在不同环境中展现出很强的适应性。苔藓有三种繁殖方式:无性繁殖、有性繁殖和营养繁殖,并且隐生现象是其重要的生存策略,这些特性为算法设计提供了思路。

核心机制

  • 确定风向:MGO 采用种群划分的方法,利用大多数个体与最优个体之间的位置关系来确定种群中所有个体的进化方向,将单个苔藓个体作为搜索代理 m,种群 X 由所有苔藓个体组成,风的方向总是从苔藓数量较多的地区吹向最有利生长环境中的单个苔藓,以此避免算法陷入局部最优解。
  • 孢子散布搜索:模拟孢子在风中的传播特性,大多数孢子在稳定的风条件下分散,一小部分在湍流条件下分散,最终随着风力减弱,孢子开始在离苔藓更近的地方定居。通过建模确定孢子的位置,使个体可随机选择步长,防止固定步长导致的收敛问题,确保种群多样性。
  • 双传播搜索:模拟苔藓的有性繁殖和营养繁殖,在有性繁殖过程中,个体基因作为解决方案,新个体可从当前和最优个体中获取基因;在营养繁殖过程中,苔藓个体的碎片发育成新个体也被视为新的解决方案。该搜索增加了只改变单个维度方法的比例,增强了整体的局部勘探能力。
  • 隐生机制:受苔藓隐生现象启发,提出记录个体历史信息的机制,不直接改变个体,而是记录每个迭代中产生的个体,当达到最大记录数或完成种群迭代时,触发机制恢复最优个体并替换当前个体,保证了种群的全球探索能力和人口质量。

性能测评

作者在 CEC 2017 和 CEC 2022 测试函数中,与 10 种原始和先进的算法进行比较,并将 MGO 应用于四个实际工程问题。另外采用 23 个标准测试函数 CEC2005,设置种群数量为 30,迭代次数为 1000,和经典的粒子群优化算法 PSO 进行对比,结果表明 MGO 在大部分函数上均优于 PSO 算法,且拥有不错的跳出局部最优的能力,能有效解决复杂的工程设计问题。

代码获取

该算法的源代码可以在https://aliasgharheidari.com/mgo.html及其他网站获取。

MGO 算法与其他元启发式算法相比,具有以下优势:

独特的搜索机制带来的优势

  • 风向确定机制导向性佳:MGO 算法的 “确定风向” 机制利用种群中大多数个体与最优个体的位置关系确定进化方向,不像一些算法随机搜索或仅依靠个体自身信息进行搜索,能为种群进化提供明确方向,引导搜索朝着最优解区域进行,提高搜索效率2。
  • 孢子散布搜索多样性好:孢子散布搜索模拟孢子在风中传播,个体可随机选择步长,能防止固定步长导致的收敛问题,确保种群多样性。对比一些步长固定或调整策略单一的算法,如基本粒子群优化算法(PSO),MGO 能更有效地探索解空间,避免过早陷入局部最优2。
  • 双传播搜索局部勘探强:双传播搜索模拟苔藓有性繁殖和营养繁殖,增加了只改变单个维度方法的比例,增强了局部勘探能力。与遗传算法(GA)等相比,GA 虽有交叉、变异操作,但对局部区域的精细搜索能力相对较弱,MGO 在局部搜索上更具优势,能更精准地挖掘局部最优解2。
  • 隐生机制全局搜索优:受苔藓隐生现象启发的隐生机制,不直接改变个体,而是记录个体历史信息,触发机制时恢复最优个体并替换当前个体,保证了种群的全球探索能力和人口质量。而差分进化算法(DE)等在进化过程中可能过度依赖当前种群信息,容易陷入局部最优,MGO 的隐生机制使其在全局搜索方面更具优势2。

性能表现上的优势

  • 优化精度高:在 CEC 2017、CEC 2022 测试函数以及 23 个 CEC2005 标准测试函数的实验中,MGO 算法与多种原始和先进的算法进行比较,结果表明 MGO 在大部分函数上表现出色,能获得更优的解,具有较高的优化精度2。
  • 收敛速度快:MGO 的多种搜索机制协同工作,使算法能够快速定位到最优解附近区域,并迅速收敛。在解决一些复杂工程问题时,相比其他算法能更快地找到满足要求的解,减少计算时间和资源消耗。
  • 鲁棒性强:MGO 算法在面对不同类型、不同维度的问题时,都能保持较好的性能表现。无论是单峰、多峰函数优化问题,还是实际工程中的复杂优化问题,MGO 都能有效应对,具有较强的适应性和稳定性,即鲁棒性更强。

MGO 算法可应用于以下领域:

工程设计领域

  • 机械工程设计:在机械零件的结构优化设计中,如齿轮传动系统的参数优化、发动机部件的设计优化等,MGO 算法可以通过对设计参数的调整,找到使零件性能最优、成本最低、可靠性最高的设计方案。
  • 电气工程设计:在电力系统的规划与设计中,例如电网的布局优化、电力设备的选型与配置等方面,MGO 算法能够帮助工程师找到最优的设计方案,提高电力系统的效率和稳定性。
  • 土木工程设计:在建筑结构的设计优化中,像高层建筑的结构选型、桥梁的跨度与结构形式优化等,MGO 算法可以根据不同的约束条件和性能要求,找到最合理的设计方案,确保结构的安全性和经济性。

工业制造领域

  • 生产调度优化:在工厂的生产过程中,MGO 算法可用于优化生产任务的分配和调度,合理安排设备、人员等资源,使生产效率最大化,生产成本最小化,同时满足订单交付时间等要求。
  • 供应链管理:在供应链的各个环节,如库存管理、物流配送路径规划等方面,MGO 算法可以帮助企业优化供应链的运作,降低库存成本,提高物流配送效率,增强供应链的整体竞争力。
  • 质量控制与优化:在产品质量控制中,MGO 算法可以用于优化生产工艺参数,找到最优的生产条件,减少产品的质量波动,提高产品的合格率和一致性。

科学研究领域

  • 物理学中的优化问题:在量子物理、统计物理等领域,MGO 算法可用于优化物理模型的参数,帮助科学家更好地理解和解释物理现象,预测物理系统的行为。
  • 化学工程中的优化问题:在化学反应过程的优化、化工工艺的设计与优化等方面,MGO 算法可以帮助化学工程师找到最优的反应条件、工艺流程,提高化学反应的转化率和选择性,降低能耗和废弃物排放。
  • 生物学中的优化问题:在生物进化模型的构建、生物系统的参数估计等方面,MGO 算法可以为生物学家提供有效的优化工具,帮助他们更好地研究生物系统的规律和机制。

其他领域

  • 金融领域:在投资组合优化中,MGO 算法可以根据投资者的风险偏好和收益目标,优化投资组合中各种资产的配置比例,使投资组合在风险一定的情况下获得最大收益,或者在收益一定的情况下风险最小。
  • 交通领域:在交通流量优化、公交线路规划等方面,MGO 算法可以通过对交通网络中的流量分配、线路设置等进行优化,提高交通系统的运行效率,缓解交通拥堵。
  • 能源领域:在能源系统的规划与管理中,如可再生能源的布局优化、能源分配网络的设计等,MGO 算法可以帮助能源规划者合理配置能源资源,提高能源利用效率,促进能源的可持续发展。

智能优化算法Moss Growth Optimization (MGO) 在2024年的研究中,可结合收敛曲线分析参数敏感性分析图像分割算法优化等方向展开应用。以下是具体实现方法、案例及技术建议:


1. 收敛曲线分析:验证MGO的优化性能

应用场景
  • 评估MGO在不同优化问题(如多峰函数、高维问题)中的收敛速度和稳定性。
  • 对比MGO与传统算法(GA、PSO)的全局搜索能力。
实现步骤
  1. 问题建模:选择标准测试函数(如Rosenbrock、Ackley)或实际工程问题(如结构设计)。
  2. 算法参数设置
    • 初始种群规模、迭代次数、生长扩散概率等。
  3. 收敛指标计算
    • 记录每代最优适应度值,绘制收敛曲线。
    • 计算收敛代数、最终适应度值标准差。
  4. 可视化分析
    • 对比不同算法在相同问题上的收敛曲线(MATLAB/Python绘制)。
    • 统计平均收敛次数和鲁棒性。
示例课题
  • ​《基于MGO的改进收敛策略研究》​:引入动态扩散概率,加速收敛。
  • ​《MGO在非凸优化问题中的性能验证》​:测试多局部极值场景下的稳定性。
代码建议
 

matlab

% 收敛曲线绘制示例
iterations = 1:max_iter;
plot(iterations, MGO_best_fitness, 'r-', 'LineWidth', 1.5);
hold on;
plot(iterations, PSO_best_fitness, 'b--', 'LineWidth', 1.5);
xlabel('迭代次数');
ylabel('最优适应度值');
legend('MGO', 'PSO');
title('收敛曲线对比');
grid on;

2. 参数敏感性分析:优化MGO的关键参数

应用场景
  • 研究MGO中参数(如扩散率、竞争阈值)对结果的影响。
  • 确定参数最优组合,提升算法普适性。
实现步骤
  1. 参数范围设定
    • 扩散率(0.1~0.9)、种群规模(20~200)等。
  2. 实验设计
    • 使用正交实验法或全因子设计,减少实验次数。
  3. 敏感性度量
    • 统计参数变化对适应度值的影响(方差分析ANOVA)。
    • 绘制热力图或响应曲面,展示参数交互作用。
  4. 动态参数策略
    • 根据迭代次数动态调整参数(如前期高扩散率,后期高竞争阈值)。
示例课题
  • ​《MGO参数敏感性分析与自适应策略设计》​:提出参数自适应规则。
  • ​《基于响应面法的MGO参数优化》​:利用实验设计寻找最优参数组合。
可视化工具
  • Python库:使用seaborn绘制热力图,plotly生成3D响应曲面。
  • MATLAB工具anova1函数进行方差分析,surf绘制参数影响曲面。

3. 图像分割算法优化:结合MGO提升分割精度

应用场景
  • 优化图像分割中的阈值选取、区域生长规则或超参数(如聚类数)。
  • 解决传统方法(如Otsu、K-means)易陷入局部最优的问题。
实现步骤
  1. 目标函数定义
    • 分割评价指标(如类间方差、轮廓系数)作为适应度函数。
  2. MGO编码设计
    • 将阈值或聚类中心编码为“苔藓个体”。
  3. 算法流程
    • 初始化:随机生成阈值候选解。
    • 生长扩散:邻域内生成新解(如阈值±5)。
    • 资源竞争:保留适应度高的解,淘汰低质量解。
  4. 结果验证
    • 对比传统算法在医学图像(如MRI)、遥感图像上的分割效果(Dice系数、IoU)。
示例课题
  • ​《基于MGO的多阈值图像分割算法研究》​:优化脑肿瘤MRI分割。
  • ​《MGO驱动的区域生长算法改进》​:用于卫星图像地物分类。

python

import cv2
import numpy as np

def fitness_function(threshold):
    # 图像二值化并计算类间方差
    _, binary_img = cv2.threshold(image, threshold, 255, cv2.THRESH_BINARY)
    return calculate_interclass_variance(binary_img)

# MGO主循环
best_threshold = None
best_fitness = -np.inf
for iteration in range(max_iter):
    for moss in population:
        current_fitness = fitness_function(moss.threshold)
        if current_fitness > best_fitness:
            best_fitness = current_fitness
            best_threshold = moss.threshold
        # 扩散和竞争逻辑...

4. 前沿研究方向(2024年)​

  1. 混合算法设计

    • 结合深度学习:用MGO优化神经网络结构(如Transformer层数、注意力头数)。
    • 融合强化学习:将MGO作为策略搜索器,解决动态环境优化问题(如机器人路径规划)。
  2. 多目标优化扩展

    • 改进MGO以支持多目标优化(如NSGA-II框架),应用于环保-经济权衡问题。
  3. 硬件加速与并行化

    • 利用GPU并行计算加速MGO的种群更新(CUDA/PyTorch实现)。

实施建议

  • 工具选择
    • MATLAB适合快速验证算法理论,Python(NumPy、OpenCV)适合工程部署。
  • 数据公开
    • 使用公开数据集(如Kaggle医学图像、CEC测试函数)确保结果可复现。
  • 创新点挖掘
    • 在参数敏感性分析中提出动态调整公式,或设计新型扩散规则(如量子扩散)。

总结

MGO在收敛性分析参数调优图像分割中的应用,可成为本科毕业课题的核心创新点。通过实验设计、对比验证及跨学科拓展(如医疗影像、自动驾驶),既能体现算法理论深度,又能解决实际问题,符合2024年智能优化算法的研究趋势。

具体代码及实验结果

%% 
% 清除工作区中的所有变量
clear all 
% 清除命令窗口中的内容
clc
% 将随机数生成器设置为默认状态,确保结果可复现
rng('default')

% 选择要测试的目标函数名称,这里可以从 F1 到 F23 中选择
Function_name='F6'; 

% 加载所选基准函数的详细信息
% lb 为函数的下限,即变量的最小值
% ub 为函数的上限,即变量的最大值
% dim 为函数的维度,即变量的数量
% fobj 为目标函数句柄,用于后续计算目标函数值
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);

% 最大适应度评估次数,通常根据函数维度进行设置
MaxFEs=1000*dim;

% 种群大小,即算法中苔藓个体的数量
N = 50; 

% 调用 MGO 算法进行优化计算
% Best_pos 为算法找到的最优解
% Convergence_curve 为算法迭代过程中最优解的变化曲线
[Best_pos,Convergence_curve] = MGO(N,MaxFEs,lb,ub,dim,fobj);

% 创建一个新的图形窗口,并设置其位置和大小
figure('Position',[269   240   660   290])

% 绘制搜索空间的图形
subplot(1,2,1);
% 调用 func_plot 函数绘制所选目标函数的搜索空间图形
func_plot(Function_name);
% 设置子图的标题
title('Parameter space')
% 设置 x 轴标签
xlabel('x_1');
% 设置 y 轴标签
ylabel('x_2');
% 设置 z 轴标签,显示目标函数名称
zlabel([Function_name,'( x_1 , x_2 )'])

% 绘制目标空间的图形
subplot(1,2,2);
% 绘制收敛曲线,颜色为红色
plot(Convergence_curve,'Color','r')
% 设置子图的标题
title('Objective space')
% 设置 x 轴标签,表示迭代次数
xlabel('Iteration');
% 设置 y 轴标签,表示到目前为止获得的最佳得分
ylabel('Best score obtained so far');

% 调整坐标轴范围,使其紧密贴合数据
axis tight
% 显示网格线
grid on
% 显示坐标轴边框
box on
% 添加图例,显示使用的算法名称为 MGO
legend('MGO')

% 显示 MGO 算法找到的最优解
display(['The best solution obtained by ,MGO is : ', num2str(Best_pos)]);

具体优化算法请跳转:智能优化算法- (MGO)-2024-可用于(收敛曲线分析/参数敏感性分析/图像分割算法优化)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值