蛇优化算法S0A-(可用于特征工程/图像分割/图像识别/模型参数调优/机械系统动力学优化)
蛇优化算法(Snake Optimization Algorithm,SOA)是一种新型的元启发式智能优化算法,以下从其原理、流程、应用等方面进行介绍:
算法原理
- 灵感来源:蛇优化算法主要受到蛇的生物学行为启发,包括蛇的运动方式、捕食行为、蜕皮现象等。通过模拟蛇在自然环境中的这些行为,来实现对问题空间的搜索和优化。
- 具体模拟行为
- 蛇的运动:蛇通常以蜿蜒曲折的方式移动,SOA 模拟这种运动方式来探索搜索空间。蛇在搜索空间中移动时,会根据当前位置和目标信息调整移动方向和步长,类似于在解空间中进行局部搜索和全局搜索的平衡。
- 捕食行为:蛇在捕食时会感知猎物的位置,并向猎物靠近。在算法中,这对应于朝着最优解的方向进行搜索。蛇会根据当前解与已知最优解之间的差异,调整自己的搜索策略,以更快地找到更优解。
- 蜕皮现象:蛇会周期性地蜕皮,这被认为是一种自我更新和适应环境的机制。在 SOA 中,通过引入蜕皮操作来帮助算法跳出局部最优解,保持种群的多样性,使算法能够继续探索更广阔的搜索空间,从而有可能找到全局最优解。
算法流程
- 初始化:随机生成一定数量的蛇个体作为初始种群,每个蛇个体代表问题的一个潜在解。确定算法的参数,如最大迭代次数、种群规模、蜕皮概率等。
- 适应度评估:根据问题的目标函数,计算每个蛇个体的适应度值,适应度值用于衡量蛇个体在解决问题时的优劣程度。
- 蛇的运动与更新
- 全局搜索阶段:根据一定的概率,部分蛇个体进行全局搜索,模拟蛇在较大范围内寻找猎物的行为。通过随机选择一个方向和步长,使蛇个体在搜索空间中进行移动,以探索新的区域。
- 局部搜索阶段:其他蛇个体进行局部搜索,以当前位置为中心,在较小的范围内进行精细搜索。这可以通过利用当前蛇个体与周围较优个体的信息,调整移动方向和步长,使蛇个体向更优的解靠近。
- 捕食行为模拟:根据蛇个体的适应度值,确定当前的最优解(猎物位置)。让蛇个体根据与最优解的距离和方向,调整自己的位置,向最优解靠近,模拟蛇捕食猎物的过程。
- 蜕皮操作:按照设定的蜕皮概率,对部分蛇个体进行蜕皮操作。蜕皮操作可以是对蛇个体的某些特征进行随机改变,或者采用一些特定的策略来更新蛇个体的位置,以帮助算法跳出局部最优。
- 终止条件判断:检查是否满足终止条件,如达到最大迭代次数、最优解的变化小于某个阈值等。如果满足终止条件,则输出当前的最优解作为算法的结果;否则,返回步骤 3 继续进行迭代。
应用领域
- 工程优化:在机械设计、结构优化等工程领域,用于寻找最优的设计参数,以提高产品性能、降低成本等。例如,在汽车发动机的设计中,利用蛇优化算法可以优化发动机的结构参数,提高燃烧效率和动力输出。
- 机器学习:在机器学习中,可用于优化模型的参数,如神经网络的权重、支持向量机的参数等,以提高模型的准确性和泛化能力。例如,在图像识别任务中,使用蛇优化算法优化卷积神经网络的参数,能够提高图像识别的准确率。
- 电力系统:在电力系统的运行和规划中,用于优化电力分配、电网调度等问题,以提高电力系统的运行效率和稳定性。例如,在智能电网的调度中,蛇优化算法可以帮助确定最优的电力分配方案,降低电网损耗。
- 物流与供应链管理:在物流路径规划、库存管理等方面有应用,可帮助企业降低物流成本、提高供应链的效率。例如,在货物配送路径规划中,利用蛇优化算法可以找到最优的配送路线,减少运输时间和成本。
算法特点
- 优点
- 较强的全局搜索能力:通过模拟蛇的全局搜索和局部搜索行为,能够在较大的搜索空间中有效地寻找最优解,不容易陷入局部最优。
- 良好的适应性:可以根据不同的问题特点和需求,灵活调整算法的参数和操作,具有较强的通用性和适应性。
- 易于实现:算法的原理和流程相对简单,易于理解和编程实现,不需要复杂的数学理论和计算。
- 缺点
- 收敛速度较慢:在某些情况下,尤其是对于复杂的优化问题,蛇优化算法的收敛速度可能相对较慢,需要较多的迭代次数才能达到满意的结果。
- 对参数敏感:算法的性能可能对参数的选择比较敏感,不同的参数设置可能会导致算法的收敛效果和结果有较大差异,需要进行一定的参数调整和优化。
特征工程
- 特征选择:将特征子集的选择看作是在解空间中寻找最优解的过程。把每个可能的特征子集视为蛇的一个位置,通过 SOA 的搜索机制,以模型在使用该特征子集进行训练时的性能指标(如分类准确率、回归误差等)作为适应度函数,评估每个位置的优劣。SOA 可在众多特征组合中快速找到能使模型性能最优的特征子集,去除冗余和无关特征,降低数据维度,提高模型训练效率和泛化能力。
- 特征提取:对于原始数据中的复杂特征关系,SOA 可以优化特征提取算法的参数,使算法能够更有效地从原始数据中提取出具有代表性和区分度的特征。例如在自然语言处理中,优化词向量模型的参数,使提取出的词向量能更好地表示文本的语义信息;在时间序列数据中,优化小波变换等特征提取方法的参数,提取出更能反映数据趋势和规律的特征。
图像分割
- 优化聚类中心:以 K-means 算法为例,传统 K-means 算法对初始聚类中心的选择较为敏感,容易陷入局部最优。SOA 可以通过优化 K-means 的初始聚类中心,将聚类中心的确定转化为一个优化问题。利用 SOA 的全局搜索能力,找到更优的初始聚类中心,使得 K-means 算法在对图像像素进行聚类时,能更准确地将相似的像素点划分到同一类,实现更精准的图像分割1。
- 融合其他算法:可以与其他图像分割算法如基于图论的分割算法、水平集算法等相结合。SOA 用于优化这些算法中的关键参数,如在图论算法中优化相似度阈值、在水平集算法中优化曲线演化的参数等,从而提高这些算法的分割性能,更好地处理图像中的复杂结构和边界。
图像识别
- 优化特征提取网络:在卷积神经网络(CNN)等用于图像识别的模型中,SOA 可用于优化网络的结构参数,如卷积核的大小、数量、步长等。通过 SOA 的搜索和优化,使 CNN 能够提取到更具判别性的图像特征,提高对不同图像类别的区分能力,进而提升图像识别的准确率。
- 融合分类器参数调整:对于图像识别中的分类器,如支持向量机(SVM)、Softmax 分类器等,SOA 可以优化其参数,如 SVM 中的惩罚参数 C 和核参数 γ 等。通过找到最优的参数组合,使分类器能够更准确地对提取到的图像特征进行分类,将图像正确地识别为相应的类别。
模型参数调优
- 神经网络模型:在深度神经网络、循环神经网络等模型中,SOA 可用于调整模型的权重和偏置参数,以及优化超参数,如学习率、层数、神经元个数等。通过模拟蛇的捕食和移动行为,在参数空间中进行全局搜索,找到能使模型损失函数最小化或准确率最大化的参数组合,提高模型的拟合能力和泛化能力,使模型能够更好地处理各种复杂的数据集2。
- 其他机器学习模型:对于决策树、随机森林、梯度提升树等机器学习模型,SOA 可以优化模型的参数,如决策树的最大深度、叶子节点最小样本数,随机森林中的树的数量等。通过优化这些参数,使模型能够更好地拟合数据,降低过拟合风险,提高模型的预测精度和稳定性。
机械系统动力学优化
- 参数优化:对于机械系统中的质量、阻尼、刚度等动力学参数,SOA 可以将这些参数作为优化变量,以系统的动态性能指标,如振动幅值、固有频率、响应时间等为目标函数,通过搜索最优的参数组合,使机械系统具有更好的动态性能,减少振动和噪声,提高系统的稳定性和可靠性。
- 结构优化:在机械系统的结构设计中,如多连杆机构、齿轮传动系统等,SOA 可以优化结构的尺寸、形状和连接方式等参数。以系统的动力学性能和力学性能为约束条件,通过 SOA 的优化,找到最优的结构方案,使机械系统在满足工作要求的同时,具有更高的效率和更低的能耗。
具体代码及实验结果
- SOA:模拟蛇的生物学行为,包括运动、捕食和蜕皮等行为进行搜索优化。
- PSO:通过粒子的速度和位置更新,根据个体和群体的最优信息来寻找最优解。
- GWO:模拟灰狼的社会等级和捕食行为,利用狼群中不同等级的狼(α、β、δ)的信息引导搜索。
- 测试函数:使用 CEC2005 测试函数集,范围从 F1 到 F23,涵盖了单峰、多峰、可分离、不可分、低维、高维等不同类型的函数,能够全面评估算法的性能。
- 实验参数:
- 种群规模:设定为 50(SearchAgents = 50)。
- 最大迭代次数:设定为 1000(Max_iterations = 1000)。
%% 清除工作空间中的变量
clear
%% 清除命令行窗口中的内容
clc
%% 关闭所有打开的图形窗口
close all
%% 选定优化函数,自行替换:F1~F23,'F8'只是一个示例,可根据需要修改
number='F8'; %选定优化函数,自行替换:F1~F23
%% 调用 CEC2005 函数获取优化问题的相关信息,包括下界、上界、维度和目标函数表达式
[lb,ub,dim,fobj]=CEC2005(number); % [lb,ub,D,y]:下界、上界、维度、目标函数表达式
%% 种群规模,即搜索代理的数量,这里设置为 50
SearchAgents=50; % population members
%% 最大迭代次数,这里设置为 1000
Max_iterations=1000; % maximum number of iteration
%% 调用 SO 算法进行优化
% 输入:SearchAgents(种群规模)、Max_iterations(最大迭代次数)、fobj(目标函数)、dim(维度)、lb(下界)、ub(上界)
% 输出:Xfood(最优解的位置)、Xvalue(最优解的适应度值)、CNVG(SO 算法的收敛曲线)
[Xfood, Xvalue,CNVG] = SO(SearchAgents,Max_iterations,fobj, dim,lb,ub); % Calculating the solution of the given problem using SO
% 显示 SO 算法找到的目标函数的最优值
display(['The best optimal value of the objective funciton found by SO for ' [num2str(number)],' is : ', num2str(Xvalue)]);
% 以指数形式打印 SO 算法得到的最佳解
fprintf ('Best solution obtained by SO: %s\n', num2str(Xfood,'%e '));
%% 调用 PSO 算法进行优化
% 输入:SearchAgents(种群规模)、Max_iterations(最大迭代次数)、lb(下界)、ub(上界)、dim(维度)、fobj(目标函数)
% 输出:g(最佳位置)、gbest(最佳适应度值)、gb(收敛曲线)
[g,gbest,gb]=PSO(SearchAgents,Max_iterations,lb,ub,dim,fobj); % g 最佳位置% gbest 最佳适应度值% gb 收敛曲线
% 显示 PSO 算法找到的目标函数的最优值
display(['The best optimal value of the objective funciton found by PSO for ' [num2str(number)],' is : ', num2str(gbest)]);
% 以指数形式打印 PSO 算法得到的最佳解
fprintf ('Best solution obtained by PSO: %s\n', num2str(g,'%e '));
%% 调用 GWO 算法进行优化
% 输入:SearchAgents(种群规模)、Max_iterations(最大迭代次数)、lb(下界)、ub(上界)、dim(维度)、fobj(目标函数)
% 输出:Alpha_score(最佳适应度值)、Alpha_pos(最优解的位置)、Convergence_curve(收敛曲线)
[Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents,Max_iterations,lb,ub,dim,fobj);
% 显示 GWO 算法找到的目标函数的最优值
display(['The best optimal value of the objective funciton found by GWO for ' [num2str(number)],' is : ', num2str(Alpha_score)]);
% 以指数形式打印 GWO 算法得到的最佳解
fprintf ('Best solution obtained by GWO: %s\n', num2str(Alpha_pos,'%e '));
%% 绘制图形
figure1 = figure('Color',[1 1 1]);
%% 创建第一个子图,用于绘制优化函数的图形
G1=subplot(1,2,1,'Parent',figure1);
% 调用 func_plot 函数绘制函数图形,具体函数内容未给出
func_plot(number)
title(number)
xlabel('x')
ylabel('y')
zlabel('z')
%% 创建第二个子图,用于绘制收敛曲线
subplot(1,2,2)
G2=subplot(1,2,2,'Parent',figure1);
%% 选择 35 个随机点用于绘制收敛曲线
CNT=35;
% 从 1 到 Max_iterations 中随机选取 CNT 个点,用于在收敛曲线中显示
k=round(linspace(1,Max_iterations,CNT)); %随机选CNT个点
% 注意:如果收敛曲线画出来的点很少,随机点很稀疏,说明点取少了,这时应增加取点的数量,100、200、300等,逐渐增加
% 相反,如果收敛曲线上的随机点非常密集,说明点取多了,此时要减少取点数量
% 迭代次数从 1 到 Max_iterations
iter=1:1:Max_iterations;
% 以对数-线性刻度绘制 PSO 算法的收敛曲线,使用蓝色线条和星号标记
semilogy(iter(k),gb(k),'b-*','linewidth',1);
hold on
% 以对数-线性刻度绘制 GWO 算法的收敛曲线,使用品红色箭头标记
semilogy(iter(k),Convergence_curve(k),'m->','linewidth',1);
hold on
% 以对数-线性刻度绘制 SO 算法的收敛曲线,使用绿色圆形和叉号标记
semilogy(iter(k),CNVG(k),'g-p','linewidth',1);
% 显示网格
grid on;
% 为子图添加标题
title('收敛曲线')
% 为 x 轴添加标签
xlabel('迭代次数');
% 为 y 轴添加标签
ylabel('适应度值');
% 显示图形边框
box on
% 为图形添加图例,分别对应三种算法
legend('PSO','GWO','SO')
% 设置图形窗口的位置和大小
set (gcf,'position', [300,300,800,350])
- 在单峰函数(如 F1 等)上,由于函数形状相对简单,可能会发现一些算法更容易找到全局最优解。例如,如果 PSO 算法在这类函数上的最优适应度值最小,可能是因为它在简单的搜索空间中能够较快地向最优解收敛,其粒子的信息共享机制使得粒子能够快速聚集在最优解附近。
- 对于多峰函数(如 F8 等),其存在多个局部最优解,算法的性能可能会有很大差异。如果 SOA 表现较好,可能是因为它的蜕皮操作帮助它跳出局部最优,能够更广泛地搜索空间,从而找到全局最优解。而 GWO 算法在这种情况下可能会受到狼群信息更新的限制,陷入局部最优解而无法跳出。
- 收敛曲线观察:
- 通过绘制的收敛曲线(代码中以
semilogy
绘制)可以观察不同算法的收敛速度。收敛曲线描述了随着迭代次数的增加,算法的适应度值的变化趋势。 - 观察发现:
- 某些算法可能在开始阶段收敛速度很快,例如 PSO 算法在最初的几十次迭代中可能会迅速降低适应度值,这可能是因为其个体粒子在初始时会快速向局部或全局最优位置移动。但在后期,可能会陷入局部最优而导致收敛速度减缓,收敛曲线趋于平缓。
- 对于 SOA 算法,如果其收敛曲线呈现出多次抖动的情况,这可能是因为其全局搜索和局部搜索以及蜕皮操作的交替进行,使得它不断在搜索空间中探索,前期收敛速度可能不是最快,但在后期有可能会找到更好的最优解,其收敛曲线会超越其他算法。
- GWO 算法可能具有较为稳定的收敛速度,因为其通过狼群的等级机制,在一定程度上平衡了全局和局部搜索,但在复杂函数上可能无法像 SOA 那样跳出局部最优,导致收敛曲线停留在一个较高的适应度值上。
- 通过绘制的收敛曲线(代码中以
- 量化分析:
- 可以计算每个算法达到一定精度(如距离已知全局最优解的误差在某个阈值内)所需的迭代次数,通过对不同测试函数进行统计,得出每个算法的平均收敛迭代次数。例如,对于某个测试函数,SOA 达到误差小于 1e-5 的最优解需要 500 次迭代,而 PSO 需要 400 次,但最终的最优解却是 SOA 更优,这就表明 PSO 虽然收敛快,但可能收敛到了局部最优,而 SOA 虽慢但能找到更好的解。
-
收敛精度评估
- 与理论最优解对比:
- 对于每个测试函数,将三种算法得到的最优解与已知的理论最优解(如果有的话)进行对比,计算它们的相对误差。
- 相对误差计算公式为:
相对误差 = abs(算法最优解 - 理论最优解) / abs(理论最优解)
。 - 统计每个算法在不同测试函数上的平均相对误差。例如,计算出 SOA 在多个测试函数上的平均相对误差为 5%,PSO 为 8%,GWO 为 7%,则表明 SOA 在收敛精度上可能更优。
- 精度稳定性:
- 观察不同算法在多次运行同一种测试函数时的最优解的标准差。标准差较小的算法说明其在不同运行中得到的最优解更稳定,更具可重复性。如果 SOA 在多次运行中对某一测试函数得到的最优解的标准差为 0.01,而 PSO 的标准差为 0.1,说明 SOA 在该测试函数上的精度稳定性更好。
- 性能总结:
- 通过上述分析,可以得出在不同测试函数和不同实验设置下,三种算法的性能表现总结。例如,在大多数单峰函数中,PSO 可能具有较快的收敛速度,但在多峰函数上可能会陷入局部最优;SOA 在多峰函数上由于其独特的搜索机制表现出更好的全局搜索能力,能够找到更优的解,但收敛速度可能较慢;GWO 在一些中等复杂度的函数上表现稳定,但在高维复杂函数上的性能可能需要改进。
- 适用场景推荐:
- 根据实验结果,对于需要快速求解的简单优化问题,PSO 可能是一个较好的选择;对于复杂的、具有多个局部最优的优化问题,SOA 更有潜力找到全局最优解;而 GWO 可以在一些对精度要求不是特别高,但需要相对稳定的搜索性能的场景中使用。
- 进一步研究建议:
- 可以考虑对算法进行改进,如将不同算法的优点结合,开发混合算法,以提高性能。对于性能稍弱的算法,可以尝试调整其参数设置或引入新的搜索策略,以克服其缺点。同时,可以进一步扩大测试函数的范围和数量,进行更全面的性能评估。
- 可以考虑对算法进行改进,如将不同算法的优点结合,开发混合算法,以提高性能。对于性能稍弱的算法,可以尝试调整其参数设置或引入新的搜索策略,以克服其缺点。同时,可以进一步扩大测试函数的范围和数量,进行更全面的性能评估。
- 具体代码请移步下列网址
- 蛇优化算法S0A-(可用于特征工程/图像分割/图像识别/模型参数调优/机械系统动力学优化)