给定一个常数K以及一个单链表L,请编写程序将L中每K个结点反转。例如:给定L为1→2→3→4→5→6,K为3,则输出应该为3→2→1→6→5→4;如果K为4,则输出应该为4→3→2→1→5→6,即最后不到K个元素不反转。
输入格式:
每个输入包含1个测试用例。每个测试用例第1行给出第1个结点的地址、结点总个数正整数N(<= 105)、以及正整数K(<=N),即要求反转的子链结点的个数。结点的地址是5位非负整数,NULL地址用-1表示。
接下来有N行,每行格式为:
Address Data Next
其中Address是结点地址,Data是该结点保存的整数数据,Next是下一结点的地址。
输出格式:
对每个测试用例,顺序输出反转后的链表,其上每个结点占一行,格式与输入相同。
输入样例:00100 6 4 00000 4 99999 00100 1 12309 68237 6 -1 33218 3 00000 99999 5 68237 12309 2 33218输出样例:
00000 4 33218 33218 3 12309 12309 2 00100 00100 1 99999 99999 5 68237 68237 6 -1
#include <iostream>
using namespace std;
int main()
{
int first, n, k;
cin >> first >> n >> k;
int Add, Data[100010], Next[100010];
int l[100010];
for(int i = 0; i < n; i ++){
cin >> Add;
cin >> Data[Add] >> Next[Add];
}
int t = 0;
while(first != -1){ //按地址先后顺序将其存入数组 l
l[t++] = first;
first = Next[first];
}
int l1[100010]; //存储反转后的链表
for(int i = 0; i < n; i ++)
l1[i] = l[i];
for(int i = 0; i < n-n%k; i ++){
l1[i] = l[k-1+k*(i/k)-(i%k)];
}
for(int i = 0; i < n-1; i ++)
printf("%05d %d %05d\n", l1[i], Data[l1[i]], l1[i+1]); //*地址相应变化
printf("%05d %d -1\n", l1[n-1], Data[l1[n-1]]);
return 0;
}