【A题解题思路-第三弹】2025电工杯数学建模A题解题思路+可运行模型参考(无偿分享)

注:该内容由“数模加油站”原创,无偿分享,可以领取参考但不要利用该内容倒卖,谢谢! 

一、问题分析

问题一思路分析

为了研究光伏电站的发电特性,我们首先需要估算在“理想天气”条件下,电站本应能够产生多少电。这种理想条件下的太阳辐射强度被称为“清空辐照”,即在天空没有云、空气通透时,太阳直射地面能达到的最大值。我们使用一种国际上常用的估算方法来计算这种辐照,它会考虑地理位置(经度、纬度)、海拔高度以及太阳在天空中的位置(包括太阳高度角和方位角)。每隔 15 分钟计算一次这个“理想辐照”,我们就可以得到电站在晴朗天气下每个时刻理论上能产生的发电量,用以下公式表示:P_\text{cs}(t) = \eta_\text{STC} \cdot \frac{G_\text{cs}(t) \cdot A}{G_\text{STC}} \eta_\text{STC} = 0.17

其中,G_\text{cs}(t)是理想天气下的太阳辐射,A是光伏组件的总面积,G_\text{STC}是标准测试条件下的辐照强度。

随后,将实际观测到的发电功率P_\text{act}(t)与理论值P_\text{cs}(t)相除,可以得到一个“发电达成率”指标,称为“全天空指数”:

K_t(t) = \frac{P_\text{act}(t)}{P_\text{cs}(t)}

该指标越接近1,表示当天的天气接近理想状态;越低,则表明云层遮挡或气象条件较差。我们按每天计算这个值的中位数,可以判断该天是晴天、阴天还是多云天气。

在分析长期趋势时,我们会计算每日发电功率与额定容量的比值,即“容量因子”:

\text{CF}d = \frac{\sum{t \in d} P_\text{act}(t)}{P_\text{rated} \cdot 24}

再对其进行季节性拟合,判断春夏秋冬的发电差异;短周期特性则通过每小时统计全天空指数的波动情况来体现。

此外,我们定义每月的“性能比”来衡量电站的整体发电效率:

\text{PR} = \frac{\sum P_\text{act}}{\sum P_\text{cs}}

例如,如果某月性能比低于0.75,则说明天气条件或设备本身存在问题,如频繁的云层遮挡或系统限功。

问题二思路分析

本问题目标是利用历史光伏发电数据,预测未来7天中每15分钟的发电功率。首先按照要求将第 2、5、8、11 月的最后一周作为测试集,其余作为训练集。

简单的基线方法是直接使用前一天的功率作为预测值:

\hat{P}{d,h} = P{d-1,h}

为了提高预测精度,可以使用LSTM深度学习模型处理非线性序列。LSTM的输入为过去96个时间点的功率值及时间特征,如:

\sin\left(\frac{2\pi h}{96}\right),\cos\left(\frac{2\pi h}{96}\right)

损失函数可选择加权平均绝对误差,仅在白天有阳光的时段计算:

\mathcal{L} = \frac{1}{N} \sum_{t \in \text{白天}} \left| P_t - \hat{P}_t \right|

评价模型时采用以下两个指标:\text{nMAE} = \frac{\sum |P_t - \hat{P}t|}{\sum P\text{rated}} \text{nRMSE} = \sqrt{\frac{\sum (P_t - \hat{P}t)^2}{\sum P\text{rated}^2}}

其中P_\text{rated}是额定发电功率。

问题三思路分析

本问题引入天气预报数据(NWP)来提升预测精度。将逐小时的SSR、T_{2m}、TCC插值为15分钟,并对齐历史功率数据。

特征包含:

上一时刻实际功率P_{t-1}

当前全天空指数K_t

未来96步的SSR_{t:t+96}、T_{2m}、TCC

时间特征:\sin\left(\frac{2\pi h}{96}\right),\cos\left(\frac{2\pi h}{96}\right)

我们可以采用分位数梯度提升树,输出多个置信区间的预测值:

\hat{P}_q(t) = f_q(\mathbf{x}_t), \quad q \in {0.05, 0.5, 0.95}

与第二问结果对比,定义得分衡量提升幅度:

\text{Score}=1-\frac{\text{nRMSE}}{\text{nRMSE}}

将全天空指数中位数用于天气分类:

晴天:K_t> 0.8

多云:0.3 < K_t \leq 0.8

阴天:K_t \leq 0.3

分别计算不同天气下模型的Score值,验证NWP效果。

问题四思路分析

为克服NWP分辨率不足的问题,我们可以引入空间降尺度。以ERA5的SSR_\text{ERA5}作为输入,高分辨率辐射观测SSR^\ast作为目标。

模型训练数据为:

\left[ SSR_\text{ERA5}, \varphi, \lambda, z \right] \rightarrow SSR^\ast

模型形式为:

SSR^\ast = g(SSR_\text{ERA5}, \varphi, \lambda, z)

将预测的SSR^\ast替换原始辐射特征,重新训练功率预测模型。评估性能提升:

\Delta =\text{nRMSEERA5}-\text{nRMSE}

若\Delta > 0,说明降尺度有效。

参考文献

[1]谈玲,康瑞星,夏景明,王越.融合多源异构气象数据的光伏功率预测模型[J].电子与信息学报,2024,46(2):255-266.

[2]苏华英,王融融,张俨,廖胜利,王国松,代江.改进特征选择的光伏功率预测融合算法[J].实验科学与技术,2023,21(5):411-417.

[3]赵耀,高少炜,李东东,林顺富,杨帆,黄学勤.基于天气相似聚类与QRNN的短期光伏功率区间概率预测[J].电力系统自动化,2023,47(23):103-112.

[4]杨丽薇,高晓清,蒋俊霞,等.基于小波变换与神经网络的光伏电站短期功率预测[J].太阳能学报,2020,41(7):152-157.

[5]王晓霞,俞敏,霍泽健.基于近邻传播聚类与LSTNet的分布式光伏电站群短期功率预测[J].电力系统自动化,2023,47(6):145-154.

[6]谈玲,康瑞星,夏景明,王越.融合多源异构气象数据的光伏功率预测模型[J].电子与信息学报,2024,46(2):503-517.

[7]商立群,李洪波,侯亚东,等.基于VMD-ISSA-KELM的短期光伏发电功率预测[J].电力系统保护与控制,2022,50(21):138-148.

[8]吴明朗,庞振江,洪海敏,占兆武,靳飞,唐远洋,叶璇.基于残差的分布式光伏发电功率组合预测方法[J].深圳大学学报(理工版),2024,41(3):293-302

[9]叶其孝,姜启源译, 数学建模(原书第5版), 机械工业出版社, 2014,10.

后续都在“数模加油站”......

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值