【B题解题思路-第二弹】2025电工杯数学建模B题解题思路+可运行模型参考(无偿分享)

B 题 城市垃圾分类运输的路径优化与调度

注:该内容由“数模加油站”原创,无偿分享,可以领取参考但不要利用该内容倒卖,谢谢!

问题一:单一车辆类型下的基础路径优化与调度

1) 建立数学模型

问题描述

某城区有n个垃圾分类收集点,每个收集点每日产生一种类型的垃圾(仅考虑"厨余垃圾"单一类型,需由专用车辆运输)。已知各收集点的坐标(xᵢ, yᵢ)、垃圾产生量wᵢ(吨),以及运输车辆的最大载重Q(吨)和固定发车点(垃圾处理厂,编号为0)。

目标:以最小化每日总行驶距离为目标,确定运输车的数量、每辆运输车的运输路径及任务分配。

参数定义

  • n:收集点数量
  • i, j:收集点编号,i, j ∈ {0, 1, 2, ..., n},其中0表示垃圾处理厂
  • (xᵢ, yᵢ):收集点i的坐标
  • wᵢ:收集点i的垃圾产生量(吨),i ∈ {1, 2, ..., n}
  • Q:车辆最大载重(吨)
  • dᵢⱼ:收集点i到收集点j的距离,dᵢⱼ = √[(xᵢ-xⱼ)² + (yᵢ-yⱼ)²]
  • K:车辆数量上界,K = ⌈∑ᵢ₌₁ⁿ wᵢ / Q⌉

决策变量

  • xᵢⱼₖ:0-1变量,若车辆k从收集点i直接行驶到收集点j,则xᵢⱼₖ = 1,否则为0
  • yᵢₖ:0-1变量,若收集点i由车辆k服务,则yᵢₖ = 1,否则为0
  • zₖ:0-1变量,若使用车辆k,则zₖ = 1,否则为0
  • uᵢₖ:连续变量,车辆k访问收集点i时的累计载重量

数学模型

目标函数:

min Z = ∑ₖ₌₁ᴷ ∑ᵢ₌₀ⁿ ∑ⱼ₌₀ⁿ dᵢⱼ · xᵢⱼₖ

约束条件:

  1. 收集点服务唯一性约束:

∑ₖ₌₁ᴷ yᵢₖ = 1,  ∀i ∈ {1, 2, ..., n}

  1. 车辆载重约束:

∑ᵢ₌₁ⁿ wᵢ · yᵢₖ ≤ Q · zₖ,  ∀k ∈ {1, 2, ..., K}

  1. 车辆使用一致性约束:

yᵢₖ ≤ zₖ,  ∀i ∈ {1, 2, ..., n}, ∀k ∈ {1, 2, ..., K}

  1. 路径连续性约束:

∑ⱼ₌₀ⁿ xᵢⱼₖ = yᵢₖ,  ∀i ∈ {1, 2, ..., n}, ∀k ∈ {1, 2, ..., K}

∑ᵢ₌₀ⁿ xᵢⱼₖ = yⱼₖ,  ∀j ∈ {1, 2, ..., n}, ∀k ∈ {1, 2, ..., K}

  1. 车辆出发和返回约束:

∑ⱼ₌₁ⁿ x₀ⱼₖ ≤ zₖ,  ∀k ∈ {1, 2, ..., K}

∑ᵢ₌₁ⁿ xᵢ₀ₖ ≤ zₖ,  ∀k ∈ {1, 2, ..., K}

  1. 子回路消除约束(MTZ约束):

u₀ₖ = 0,  ∀k ∈ {1, 2, ..., K}

uᵢₖ ≥ wᵢ · yᵢₖ,  ∀i ∈ {1, 2, ..., n}, ∀k ∈ {1, 2, ..., K}

uᵢₖ ≤ Q · yᵢₖ,  ∀i ∈ {1, 2, ..., n}, ∀k ∈ {1, 2, ..., K}

uᵢₖ - uⱼₖ + Q · xᵢⱼₖ ≤ Q - wⱼ,  ∀i,j ∈ {1, 2, ..., n}, i≠j, ∀k ∈ {1, 2, ..., K}

  1. 变量定义域:

xᵢⱼₖ ∈ {0, 1},  ∀i,j ∈ {0, 1, ..., n}, ∀k ∈ {1, 2, ..., K}

yᵢₖ ∈ {0, 1},  ∀i ∈ {1, 2, ..., n}, ∀k ∈ {1, 2, ..., K}

zₖ ∈ {0, 1},  ∀k ∈ {1, 2, ..., K}

uᵢₖ ≥ 0,  ∀i ∈ {1, 2, ..., n}, ∀k ∈ {1, 2, ..., K}

2) 给定n=30Q=5吨的具体问题求解

数学模型实例化

根据附件1数据,我们有:

n = 30个收集点

Q = 5吨

处理厂坐标:(0, 0)

各收集点坐标和垃圾产生量见附件1

距离计算公式:

dᵢⱼ = ⌊√[(xᵢ-xⱼ)² + (yᵢ-yⱼ)²] + 0.5⌋  (四舍五入取整)

车辆数量上界估算:

总垃圾量 W = ∑ᵢ₌₁³⁰ wᵢ

车辆数量上界 K = ⌈W / 5⌉

整数规划非整数等等

启发式算法

遗传算法

3) 模型局限性分析与改进方向

局限性分析

1. 距离计算过于简化

  • 使用欧几里得距离,忽略实际道路网络
  • 未考虑交通信号灯、路况等因素
  • 未考虑单行道、禁行路段

2. 车辆运行假设不现实

  • 假设车辆速度恒定40km/h
  • 未考虑装卸时间
  • 未考虑交通拥堵的时变特性

3. 约束条件不够完整

  • 未考虑司机工作时间限制
  • 未考虑车辆燃油/电量限制
  • 未考虑收集点的服务时间窗口
  • 未考虑车辆维护和故障

4. 目标函数单一

  • 仅优化距离,未考虑时间成本
  • 未考虑燃油成本、人工成本
  • 未考虑环境影响(碳排放)

改进方向

改进方向一:实际路网距离模型

引入路网图G=(V,E),其中V为路网节点,E为道路边:

距离计算:dᵢⱼ = shortest_path(i, j, G)

时间依赖:dᵢⱼ(t) = f(基础距离, 拥堵系数(t))

目标函数修改:min ∑ᵢⱼₖ travel_time_ij(t) × xᵢⱼₖ

改进方向二:动态随机需求模型

考虑垃圾产生量的随机性:

wᵢ ~ N(μᵢ, σᵢ²)  (正态分布)

约束修改:P(∑ᵢ wᵢyᵢₖ ≤ Q) ≥ α  (机会约束)

或使用鲁棒优化:∑ᵢ (μᵢ + Γσᵢ)yᵢₖ ≤ Q

改进方向三:多目标优化模型

目标函数修改为:

min f = w₁×总距离 + w₂×总时间 + w₃×总成本 + w₄×碳排放

约束增加:

- 司机工作时间:∑ᵢⱼ travel_time_ij×xᵢⱼₖ ≤ T_max

- 燃油限制:∑ᵢⱼ fuel_consumption_ij×xᵢⱼₖ ≤ F_max

- 时间窗口:aᵢ ≤ arrival_time_i ≤ bᵢ

问题二:多车辆协同与载重约束下的优化

1) 建立多车辆协同运输模型

问题描述

现实中,垃圾分类运输需区分不同垃圾类型(4类垃圾:厨余垃圾、可回收物、有害垃圾、其他垃圾),每类垃圾需由专用车辆运输(车辆类型k ∈ {1,2,3,4})。每类车辆的载重限制Qₖ、容积限制Vₖ、单位距离运输成本Cₖ不同,且每个收集点可能产生多种类型的垃圾。

目标:以最小化每日总运输成本为目标。

参数定义

  • k:垃圾/车辆类型,k ∈ {1,2,3,4},分别对应厨余垃圾、可回收物、有害垃圾、其他垃圾
  • wᵢ,ₖ:收集点i产生的k类垃圾量(吨),满足∑ₖ₌₁⁴ wᵢ,ₖ = wᵢ
  • Qₖ:k类车辆的载重限制(吨)
  • Vₖ:k类车辆的容积限制(m³)
  • Cₖ:k类车辆的单位距离运输成本(元/km)
  • ρₖ:k类垃圾的密度(吨/m³)
  • Kₖ:k类车辆数量上界,Kₖ = ⌈∑ᵢ₌₁ⁿ wᵢ,ₖ / Qₖ⌉

决策变量

  • xᵢⱼₖₜ:0-1变量,k类车辆t从收集点i到收集点j则为1,否则为0
  • yᵢₖₜ:0-1变量,收集点i的k类垃圾由车辆t收集则为1,否则为0
  • zₖₜ:0-1变量,k类车辆t被使用则为1,否则为0
  • uᵢₖₜ:连续变量,k类车辆t到达收集点i时的累计重量载荷
  • vᵢₖₜ:连续变量,k类车辆t到达收集点i时的累计容积载荷

数学模型

目标函数:

min Z = ∑ₖ₌₁⁴ ∑ₜ₌₁ᴷᵏ ∑ᵢ₌₀ⁿ ∑ⱼ₌₀ⁿ Cₖ · dᵢⱼ · xᵢⱼₖₜ

约束条件:

  1. 垃圾收集完整性约束:

∑ₜ₌₁ᴷᵏ yᵢₖₜ = 1,  ∀i ∈ {1,2,...,n}, ∀k ∈ {1,2,3,4}

  1. 车辆载重约束:

∑ᵢ₌₁ⁿ wᵢ,ₖ · yᵢₖₜ ≤ Qₖ · zₖₜ,  ∀k ∈ {1,2,3,4}, ∀t ∈ {1,2,...,Kₖ}

  1. 车辆容积约束:

∑ᵢ₌₁ⁿ (wᵢ,ₖ/ρₖ) · yᵢₖₜ ≤ Vₖ · zₖₜ,  ∀k ∈ {1,2,3,4}, ∀t ∈ {1,2,...,Kₖ}

  1. 车辆使用一致性约束:

yᵢₖₜ ≤ zₖₜ,  ∀i ∈ {1,2,...,n}, ∀k ∈ {1,2,3,4}, ∀t ∈ {1,2,...,Kₖ}

  1. 路径连续性约束:

∑ⱼ₌₀ⁿ xᵢⱼₖₜ = yᵢₖₜ,  ∀i ∈ {1,2,...,n}, ∀k ∈ {1,2,3,4}, ∀t ∈ {1,2,...,Kₖ}

∑ᵢ₌₀ⁿ xᵢⱼₖₜ = yⱼₖₜ,  ∀j ∈ {1,2,...,n}, ∀k ∈ {1,2,3,4}, ∀t ∈ {1,2,...,Kₖ}

  1. 车辆出发和返回约束:

∑ⱼ₌₁ⁿ x₀ⱼₖₜ ≤ zₖₜ,  ∀k ∈ {1,2,3,4}, ∀t ∈ {1,2,...,Kₖ}

∑ᵢ₌₁ⁿ xᵢ₀ₖₜ ≤ zₖₜ,  ∀k ∈ {1,2,3,4}, ∀t ∈ {1,2,...,Kₖ}

  1. 双重子回路消除约束:

重量维度:uᵢₖₜ - uⱼₖₜ + Qₖ · xᵢⱼₖₜ ≤ Qₖ - wⱼ,ₖ,  ∀i≠j, ∀k, ∀t

容积维度:vᵢₖₜ - vⱼₖₜ + Vₖ · xᵢⱼₖₜ ≤ Vₖ - wⱼ,ₖ/ρₖ,  ∀i≠j, ∀k, ∀t

2) 算法扩展与约束条件变化分析

从问题一到问题二的扩展

变化1:问题规模扩大

  • 原问题:单类垃圾,1种车型
  • 新问题:4类垃圾,4种车型
  • 决策变量增加:n×K → n×4×Kₖ

变化2:约束条件增加

  • 新增容积约束
  • 新增垃圾类型匹配约束
  • 载重约束按车型分别计算

变化3:目标函数修改

  • 距离最小化 → 成本最小化
  • 不同车型有不同单位成本

算法扩展策略

策略一:分解协调算法

步骤1:垃圾类型分解

for k = 1 to 4:

    子问题k:min ∑ᵢⱼₜ Cₖ·dᵢⱼ·xᵢⱼₖₜ

    约束:载重、容积、路径连续性

   

步骤2:协调优化

- 检查是否有收集点可以共享路径

- 使用拉格朗日松弛协调各子问题

策略二:统一建模求解

步骤1:预处理

- 计算各类垃圾的有效收集点(wᵢ,ₖ > 0的点)

- 构建各车型的距离矩阵

步骤2:启发式初解

- 对每类垃圾独立求解TSP

- 使用节约算法合并路径

步骤3:邻域搜索改进

- 同类车辆间的2-opt, Or-opt操作

- 不同车型间的收集点交换(若同时服务)

约束条件变化分析

原约束条件(问题一):

  • 载重约束:1个
  • 路径约束:n个收集点
  • 决策变量:O(n²K)

新约束条件(问题二):

  • 载重约束:4个(按车型)
  • 容积约束:4个(新增)
  • 垃圾类型约束:4n个(每个收集点每类垃圾)
  • 路径约束:4n个收集点×车型
  • 决策变量:O(n²∑ₖKₖ)

复杂度增长:

  • 约束数量:n → 8+8n(增长约8倍)
  • 变量数量:n²K → n²∑ₖKₖ(增长约4倍,假设各车型数量相当)

具体求解过程

根据附件2和附件3的数据:

第一步:数据提取

车型参数(附件2):

k=1(厨余):Q₁=8吨, V₁=20m³, C₁=2.5元/km

k=2(可回收):Q₂=6吨, V₂=25m³, C₂=2.0元/km 

k=3(有害):Q₃=3吨, V₃=10m³, C₃=5.0元/km

k=4(其他):Q₄=10吨, V₄=18m³, C₄=1.8元/km

垃圾分布(附件3):

各收集点的4类垃圾量wᵢ,ₖ

第三步:分层求解

层次1:确定车辆数量

Kₖ = ⌈∑ᵢwᵢ,ₖ / Qₖ⌉,考虑容积限制修正

层次2:路径规划

对每种车型k,求解VRP子问题

多目标粒子群等等

层次3:全局协调

检查解的可行性和优化空间

3) 增加时间约束的模型修改

新增参数

  • Tₘₐₓ:车辆每日最大行驶时间(小时)
  • v:车辆平均行驶速度(40km/h)
  • sᵢ:收集点i的服务时间(小时)

模型修改

新增决策变量:

tᵢₖₜ:k类车辆t到达收集点i的时间

新增约束条件:

  1. 时间连续性约束:

tⱼₖₜ ≥ tᵢₖₜ + (dᵢⱼ/v) + sᵢ - M(1-xᵢⱼₖₜ),  ∀i≠j, ∀k, ∀t

  1. 最大行驶时间约束:

t₀ₖₜ + ∑ᵢ₌₁ⁿ sᵢ·yᵢₖₜ ≤ Tₘₐₓ·zₖₜ,  ∀k, ∀t

其中t₀ₖₜ表示车辆t返回处理厂的时间。

  1. 工作时间窗口约束:

6 ≤ tᵢₖₜ ≤ 18,  ∀i, ∀k, ∀t

时间约束对路径规划的影响示例

问题三:含中转站选址与时间窗口的综合优化

问题描述

考虑在城区规划若干中转站,中转站可对各类垃圾进行临时存储与分拣。每类垃圾在中转站的最大存储量为Sₖ吨,且中转站仅在固定时间窗口[aⱼ, bⱼ]内允许车辆停靠。同时需考虑碳排放约束。

目标:建立"中转站选址-路径优化-碳排放最少"的综合数学模型,最小化运输成本与中转站建设成本之和。

参数定义

  • m:候选中转站数量
  • j:中转站编号,j ∈ {n+1, n+2, ..., n+m}
  • Sⱼₖ:中转站j对k类垃圾的最大存储容量(吨)
  • [aⱼ, bⱼ]:中转站j的工作时间窗口(小时)
  • Tⱼ:建设中转站j的固定成本(万元)
  • αₖ:k类车辆的碳排放系数(kg/km)
  • βₖ:k类车辆的载重碳排放系数(kg/吨)
  • Eₘₐₓ:最大允许碳排放量(kg)

决策变量扩展

  • ωⱼ:0-1变量,是否建设中转站j
  • x¹ᵢⱼₖₜ:0-1变量,k类车辆t从收集点i到中转站j
  • x²ⱼ₀ₖₜ:0-1变量,k类车辆t从中转站j到处理厂
  • qᵢⱼₖ:连续变量,从收集点i运到中转站j的k类垃圾量
  • rⱼₖ:连续变量,中转站j储存的k类垃圾总量
  • tᵢⱼₖₜ:连续变量,k类车辆t从收集点i到中转站j的到达时间

综合数学模型

目标函数:

min Z = ∑ₖ ∑ₜ ∑ᵢ ∑ⱼ Cₖ·dᵢⱼ·x¹ᵢⱼₖₜ + ∑ₖ ∑ₜ ∑ⱼ Cₖ·dⱼ₀·x²ⱼ₀ₖₜ + ∑ⱼ₌ₙ₊₁ⁿ⁺ᵐ (Tⱼ/10)·ωⱼ

约束条件:

  1. 垃圾流量平衡约束:

∑ⱼ₌ₙ₊₁ⁿ⁺ᵐ qᵢⱼₖ = wᵢ,ₖ,  ∀i ∈ {1,2,...,n}, ∀k ∈ {1,2,3,4}

  1. 中转站容量约束:

rⱼₖ = ∑ᵢ₌₁ⁿ qᵢⱼₖ ≤ Sⱼₖ·ωⱼ,  ∀j ∈ {n+1,...,n+m}, ∀k ∈ {1,2,3,4}

  1. 中转站选址约束:

qᵢⱼₖ ≤ wᵢ,ₖ·ωⱼ,  ∀i,j,k

  1. 第一阶段车辆载重约束:

∑ᵢ₌₁ⁿ qᵢⱼₖ·yᵢⱼₖₜ ≤ Qₖ·z¹ⱼₖₜ,  ∀j,k,t

  1. 第二阶段车辆载重约束:

rⱼₖ·z²ⱼₖₜ ≤ Qₖ·z²ⱼₖₜ,  ∀j,k,t

  1. 时间窗口约束:

aⱼ ≤ tᵢⱼₖₜ ≤ bⱼ,  ∀到达中转站j的车辆

aⱼ ≤ departure_time_jkt ≤ bⱼ,  ∀从中转站j出发的车辆

  1. 碳排放约束:

∑ₖ ∑ₜ ∑ᵢ ∑ⱼ (αₖ·dᵢⱼ + βₖ·qᵢⱼₖ)·x¹ᵢⱼₖₜ + ∑ₖ ∑ₜ ∑ⱼ (αₖ·dⱼ₀ + βₖ·rⱼₖ)·x²ⱼ₀ₖₜ ≤ Eₘₐₓ

2) 两阶段求解算法设计

算法总体框架

目标:设计两阶段求解算法

  • 第一阶段:确定中转站选址与各收集点对应的中转站分配
  • 第二阶段:针对每个中转站,优化各类型车辆的运输路径

第一阶段:中转站选址与分配

Step 1:候选方案筛选

输入:m=5个候选中转站(附件4)

评估指标:

- 地理位置优势:∑ᵢ min_j(dᵢⱼ)

- 容量匹配度:∑ₖ min(Sⱼₖ, ∑ᵢ wᵢ,ₖ/距离权重)

- 成本效益比:Tⱼ / 服务能力

筛选准则:保留评估值前3-4个候选站

Step 2:选址优化模型

简化的设施选址模型:

min ∑ⱼ (Tⱼ/10)·ωⱼ + ∑ᵢ ∑ⱼ ∑ₖ transport_cost_ijk·qᵢⱼₖ

∑ⱼ qᵢⱼₖ = wᵢ,ₖ,  ∀i,k

∑ᵢ qᵢⱼₖ ≤ Sⱼₖ·ωⱼ,  ∀j,k

qᵢⱼₖ ≥ 0, ωⱼ ∈ {0,1}

求解方法:枚举法或拉格朗日松弛

Step 3:分配细化

for 每个选中的中转站j:

    for 每类垃圾k:

        使用贪心算法分配收集点:

        1. 按距离从近到远排序收集点

        2. 依次分配直到容量约束

        3. 检查时间窗口可行性

第二阶段:路径优化

Step 1:子网络构建

for 每个选中的中转站j:

    构建服务网络 Gⱼ = (Vⱼ, Eⱼ)

    Vⱼ = {0} ∪ {分配给j的收集点} ∪ {j}

    Eⱼ = {(i,j'), ∀i,j' ∈ Vⱼ}

Step 2:两层路径优化

第一层:收集点 → 中转站

for 每类垃圾k:

    min ∑ᵢ∈Sⱼₖ ∑ₜ path_cost_ikt

    s.t. 载重约束、时间窗口约束

   

第二层:中转站 → 处理厂 

for 每类垃圾k:

    min transport_cost(rⱼₖ, dⱼ₀)

    决定运输频次和载重

Step 3:协调优化

同步优化两层路径:

1. 固定第一层,优化第二层

2. 固定第二层,优化第一层 

3. 迭代直到收敛

两阶段关联与协同机制

1. 选址对路径的影响

影响机制:

- 中转站位置决定收集点分配

- 分配结果影响各子网络的路径长度

- 容量限制影响车辆配置需求

协调方法:

在第一阶段的成本估算中,考虑第二阶段的路径成本:

estimated_path_cost = α × 最近邻启发解 + β × 容量惩罚

2. 容量限制的反馈机制

容量不足处理:

if ∑ᵢ qᵢⱼₖ > Sⱼₖ:

    方案1:增加该类型车辆运输频次

    方案2:重新分配部分收集点到其他中转站

    方案3:考虑建设额外中转站

实现方法:

使用拉格朗日乘子λⱼₖ表示容量紧张程度

在第一阶段目标函数中加入:∑ⱼₖ λⱼₖ × capacity_violation_jk

3. 时间窗口协调

协调策略:

- 第一阶段:预估各中转站的车辆到达时间分布

- 第二阶段:在时间窗口内安排车辆调度

- 冲突处理:若时间窗口不可行,调整第一阶段分配

具体实现:

建立到达时间预测模型:

arrival_time_j ≈ travel_time(collection_route) + service_time

检查:aⱼ ≤ arrival_time_j ≤ bⱼ

3) 非对称路网处理与复杂度分析

非对称距离矩阵修改

根据附件5的非对称路网信息:

1. 单行道影响

原对称距离:d₄,₃₁ = d₃₁,₄ = 15km

修改后:d₄,₃₁ = 18km, d₃₁,₄ = 15km(收集点4到中转站31需绕行)

原对称距离:d₂₇,₂₈ = d₂₈,₂₇ = 14km 

修改后:d₂₇,₂₈ = 14km, d₂₈,₂₇ = 18km(27到28需绕行)

2. 时间段禁行影响

收集点23到处理厂:

- 9:00-12:00禁行:d₂₃,₀ = 45km, d₀,₂₃ = 40km

- 其他时间:使用直行距离

收集点9到收集点16:

- 9:00-11:00禁行:d₉,₁₆ = 8km, d₁₆,₉ = 10km 

- 其他时间:使用直行距离

模型修改方案

1. 距离矩阵处理

构建时间相关距离矩阵:

D(t) = [dᵢⱼ(t)],其中t表示时间

dᵢⱼ(t) = {

    direct_distance_ij,     若t不在禁行时段

    detour_distance_ij,     若t在禁行时段 

    asymmetric_distance_ij, 若存在单行道

}

2. 约束条件修改

时间依赖的距离约束:

travel_time_ij = dᵢⱼ(departure_time_i) / v

路径可行性约束:

if departure_time_i ∈ 禁行时段(i,j):

    xᵢⱼₖₜ = 0  (禁止该路径)

3. 子回路消除约束修改

非对称MTZ约束:

uᵢₖₜ - uⱼₖₜ + Qₖ·xᵢⱼₖₜ + (Qₖ-wᵢ,ₖ-wⱼ,ₖ)·xⱼᵢₖₜ ≤ Qₖ - wⱼ,ₖ

处理双向不对称的情况

复杂度对比分析,时间空间等等复杂度对比

算法选择:

- 小规模(n≤20):分支定界 + 动态规划

- 中规模(20<n≤50):变邻域搜索 + 禁忌搜索 

- 大规模(n>50):遗传算法 + 模拟退火

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值