【B题解题思路-第四弹】2025电工杯数学建模B题解题思路+可运行模型参考(无偿分享)

B 题 城市垃圾分类运输的路径优化与调度

注:该内容由“数模加油站”原创,无偿分享,可以领取参考但不要利用该内容倒卖,谢谢!

B题参考思路

B题是一道典型的组合优化问题,该问题融合了TSP(旅行商路径优化)、MTSP(多旅行商路径优化)、VRP(车辆路径问题)、调度优化以及资源约束优化问题。解决本问题的难点在于约束条件的考虑是否全面,优化目标是否选取正确,并且选择合适的方法进行问题求解。

针对问题一,要求建立单一车辆类型下的基础路径优化与调度模型。在本问中,n个垃圾分类收集点仅产生“厨余垃圾”这一类型的垃圾,各个收集点的坐标为\left( {​{x}_{i}},{​{y}_{i}} \right)、其中垃圾产量为{​{w}_{i}}吨,每辆运输车最大载重为Q吨,车辆从垃圾处理厂出发(为坐标原点),在完成所有运输任务后仍然需要返回处理厂,并且同一车辆可以选择分批运输。本问需要以最小化每日总行驶距离为目标,确定运输车的数量,运输车的路径已经任务分配,并且需要讨论模型的局限性并提出改进方向。

问题一优化目标以及约束条件:

\min \sum\limits_{k}{\sum\limits_{i=0}^{n}{\sum\limits_{j=0}^{n}{​{​{d}_{ij}}\centerdot {​{x}_{ijk}}}}}

根据题意,上式为问题一的优化目标,即最小化每日总行驶距离,其中{​{d}_{ij}}为两点之间欧几里得距离,{​{x}_{ij}}为二元变量,若车辆k从i到j则为1,反之为0。

为了实现上述目标,需要从以下三个角度进行约束,首先是每个收集点必须被访问一次,即收集点的垃圾必须被全部运输,可由下式进行约束:

\sum\limits_{k}{\sum\limits_{j=0}^{n}{​{​{x}_{ijk}}=1}}

同时每辆车每次路线的总载重量不能超过允许载重量Q,因此可由下式进行约束:

\sum\limits_{i=1}^{n}{​{​{w}_{i}}\centerdot {​{x}_{ijk}}\le Q}

最后仍需限制每辆垃圾车需要从垃圾处理厂出发并且最终返回垃圾处理厂,因此可由下式进行约束:

\sum\limits_{j=1}^{n}{​{​{x}_{0jk}}=1,\text{ }}\sum\limits_{j=1}^{n}{​{​{x}_{i0k}}=1}

在上述优化目标以及约束条件的作用下,可以选用Matlab或者Python进行编程求解,程序编写思路可参考典型的TSP求解程序。

问题一时间复杂度分析以及改进方向:

在路径规划阶段,若进行TSP暴力搜索,复杂度为O\left( n! \right),若采用动态规划的思路进行,负责度将会降低至O\left( {​{n}^{2}}\centerdot {​{2}^{n}} \right),若采用分批结合智能优化算法,复杂度会控制在O\left( {​{n}^{2}} \right)\simO\left( {​{n}^{3}} \right)

本问的局限性为忽略拥堵,红绿灯等实际情况,并且车速保持恒定,可以改进的方向为引入时间窗或者采用非对称距离矩阵,或者采用强化学习的方法进行问题的求解。

针对问题二,要求建立针对多车辆协同与载重约束下的优化模型,在本文中垃圾类型新增为4个,每种类型的垃圾需要由不同类型的专用车辆运输,同时新增每类车辆的载重限制{​{Q}_{k}},容积限制{​{V}_{k}}以及单位运输成本{​{C}_{k}}等因素,每个收集点会产生四种类型的垃圾,垃圾总量为四种垃圾数量之和,车辆从处理厂出发,完成同类型垃圾收集后仍需返回处理厂,不同类型的车辆独立调度。在本问中,优化目标修改为最小化每日总运输成本,同时仍需考虑增加车辆每日最大行驶时间的约束的模型修改。

问题二优化目标以及约束条件:

\min \sum\limits_{k=1}^{n}{\sum\limits_{t}{\sum\limits_{i=0}^{n}{\sum\limits_{j=0}^{n}{​{​{C}_{k}}\centerdot {​{d}_{ij}}\centerdot x_{ijk}^{(t)}}}}}

由于需要将优化目标修改为最小化运输成本,因此需要纳入运输成本作为影响因素,同时约束条件也需要进行相应调整。

首先是每种类型的垃圾在每个垃圾回收点都应该被完整收集,约束条件可以由下式给出:

\sum\limits_{t}{\sum\limits_{i=0}^{n}{x_{ijk}^{(t)}}}=1

随后是每辆车每趟运输应该满足载重量和体积限制,约束条件可由下式给出:

最后是和问题一一致的出发和返回约束,可由下式给出:

\sum\limits_{j=1}^{n}{​{​{x}_{0jk}}=1,\text{ }}\sum\limits_{j=1}^{n}{​{​{x}_{i0k}}=1}

问题二问题求解思路:

可以采用垃圾类型独立分组结合约束聚类以及局部TSP的方法进行求解,将垃圾类型按照k类分组处理,每类问题视作TSP问题,在容量约束下进行收集点聚类,随后对聚类后结果采用智能优化算法进行路径规划,最终合并所有类型车辆路径并且累加成本,作为全局目标值。

针对问题三,需要建立含中转站选址与时间窗口的综合优化数学模型,在本文中,考虑在城区规划中建立若干个中转站,中转站可以对各类垃圾进行临时存储和分拣,每类垃圾在中转站中的最大存储量为Sk吨,并且中转站仅允许在固定的时间窗口内停靠车辆,同时仍需根据题中所给碳排放公式考虑环境保护等问题,碳排放数量和车辆载重量以及行驶距离呈正相关。优化目标修改为最小化运输成本与中转站建设成本之和。同时还需考虑路网存在单行道、禁行时段等非对称约束。

问题三优化目标及约束条件:

\min \left( \sum\limits_{k,t}{​{​{C}_{k}}\centerdot {​{d}_{kt}}+\lambda \sum\limits_{j}{​{​{z}_{j}}{​{T}_{j}}+\mu E}} \right)

其m为中转站数量,zj为二元变量,表示是否选址中转站,Tj为建设成本E为碳排放量。约束条件同问题一与问题二。

问题三问题求解思路:

由于本问要求进行两阶段求解,第一阶段为中转站选址求解,可采用整数规划进行求解,目标为最小成本,第二阶段为路径规划阶段,将收集点分配到已选中转站,需要满足容量、时间窗口等约束问题,在每个中转站内部,分别按照垃圾类型进行路径优化。

参考资料:

更多资料:

1.TSP问题和VRP问题的区别和联系:

辨析旅行商问题(TSP)与车辆路径问题(VRP)_tsp问题和vrp问题-CSDN博客

2. 禁忌算法求解TSP:

禁忌搜索算法(TS算法)求解实例---旅行商问题 (TSP)_ts算法解决tsp旅行商问题-CSDN博客

3. 智能优化算法概述:

进化算法中的 遗传模拟退火算法(Genetic Simulated Annealing)-CSDN博客

参考文献:

[1]杨骑逊.基于遗传算法的移动机器人路径规划研究[J].信息技术与信息化,2025,(04):192-196.

[2]刘岱,张亚鸣,王凯,等.基于信息素矩阵优化蚁群算法求解城市建模的旅行商问题[J/OL].计算机应用研究,1-9[2025-05-23].

[3]张小萍,李相成.改进蝴蝶优化算法求解TSP问题[J].河南科技学院学报(自然科学版),2025,53(01):51-57..

[4]王璞,刘宏杰,周永录.基于改进人工鱼群算法求解旅行商问题及多点路径规划[J].科学技术与工程,2024,24(35):15090-15097.

[5]陈璐,魏文红.基于改进自适应遗传算法的旅行商问题研究[J].东莞理工学院学报,2024,31(05):1-8.DOI:10.16002/j.cnki.10090312.2024.05.017.

[6]杨健,王赟鹏.多车程时间窗团购车辆配送路径研究[J].物流科技,2025,48(09):96-100+108.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值