植被遥感常用反射特征表达

Figure:

在这里插入图片描述

HDRF

Let Ω ′ \Omega' Ω be the incident solid angle, Ω \Omega Ω is leaving solid angle. Consider the BRDF of a Lamvertian target is 1 π \frac{1}{\pi} π1, the BRF is 1. The HDRF of a target is defined as:
R h e m ( Ω ) = Φ r Φ r l a m = L r L r l a m = ∫ 2 π − f r ( Ω ′ , Ω ) d E ′ ∫ 2 π − 1 π d E ′ = ∫ 2 π − f r ( Ω ′ , Ω ) ∣ μ ∣ I ′ d Ω ′ 1 π ∫ 2 π − I ′ ∣ μ ′ ∣ d Ω ′ = I 1 π ∫ 2 π − I ′ ∣ μ ′ ∣ d Ω ′ ,    μ > 0. \begin{aligned} R^{hem}(\Omega)&=\frac{\Phi_r}{\Phi_r^{lam}}=\frac{L_r}{L_r^{lam}}\\&=\frac{\int_{2\pi-}f_r(\Omega',\Omega)dE'}{\int_{2\pi-}\frac{1}{\pi}dE'}=\frac{\int_{2\pi-}f_r(\Omega',\Omega)|\mu| I'd\Omega'}{\frac{1}{\pi}\int_{2\pi-}I'|\mu'| d\Omega'}\\ &= \frac{I}{\frac{1}{\pi}\int_{2\pi-}I'|\mu'| d\Omega'}, \ \ \mu>0. \end{aligned} Rhem(Ω)=ΦrlamΦr=LrlamLr=2ππ1dE2πfr(Ω,Ω)dE=π12πIμdΩ2πfr(Ω,Ω)μIdΩ=π12πIμdΩI,  μ>0.
This is equivelent to:
H D R F = < I ( Ω ) > 0 1 π ∫ 2 π − < I ( Ω ′ ) > 0 ∣ Ω ′ ⋅ n 1 ∣ d Ω ′ HDRF=\frac{<I(\Omega)>_0}{\frac{1}{\pi}\int_{2\pi-}<I(\Omega')>_0 |\Omega'\cdot n_1|d\Omega'} HDRF=π12π<I(Ω)>0Ωn1dΩ<I(Ω)>0

Here, n 1 n_1 n1 is the outward normal, < ⋅ > <\cdot> <> denotes mean over upper surface δ V t \delta V_t δVt​ , and we will ignore this notion for a simplification in remaining part of the blog. HDRF depends on atmosphere conditions. HDRF is the ratio of real radiance to the radiance reflected from a lambertian target of canopy upper surface .

HDRF has no unit.

BRF

If no atmosphere, *i.e.,*incident solar radiation at upper canopy boundary δ V t \delta V_t δVt is a parallel beam of light, the HDRF become BRF:
B R F = I ( Ω ) 1 π I ( Ω ′ ) ∣ Ω ′ ⋅ n 1 ∣ = I ( Ω ) I L a m BRF=\frac{I(\Omega)}{\frac{1}{\pi}I(\Omega')|\Omega'\cdot n_1|}=\frac{I(\Omega)}{I_{Lam}} BRF=π1I(Ω)Ωn1I(Ω)=ILamI(Ω)
Here, I L a m I_{Lam} ILam​​ is the radiance over upper surface of the canopy from a Lambertian target under the same illumination.

BRF does not depend on atmosphere conditions, only varies with Ω \Omega Ω and Ω ′ \Omega' Ω​.

BRF has no unit.

BRDF

BRDF describes the scattering of a parallel beam of incident radiation from one direction into another direction. However, the denominator of BRDF is the incident flux, not the radiance.
B R D F = I ( Ω ) ∫ 2 π + I L a m ∣ μ ∣ d Ω = I ( Ω ) I L a m π = I ( Ω ) E L a m BRDF=\frac{I(\Omega)}{\int_{2\pi+}I_{Lam}|\mu| d\Omega}=\frac{I(\Omega)}{I_{Lam}\pi}=\frac{I(\Omega)}{E_{Lam}} BRDF=2π+ILamμdΩI(Ω)=ILamπI(Ω)=ELamI(Ω)
From the second equality, we could get that π ⋅ B R D F = B R F \pi \cdot BRDF=BRF πBRDF=BRF​.

BRDF has unit s r − 1 sr^{-1} sr1.

BHR

The BHR is defined as mean irradiance exitance to incident irradiance:
A = ∫ 2 π + I ( Ω ) ∣ μ ∣ d Ω ∫ 2 π − I ( Ω ′ ) ∣ μ ′ ∣ d Ω ′ A=\frac{\int_{2\pi+}I(\Omega)|\mu|d\Omega}{\int_{2\pi-}I(\Omega')|\mu'|d\Omega'} A=2πI(Ω)μdΩ2π+I(Ω)μdΩ
BHR has no unit.

DHR

If no atomophere, BHR become DHR:
D H R = ∫ 2 π + I ( Ω ) ∣ μ ∣ d Ω I L a m ∣ μ ′ ∣ DHR=\frac{\int_{2\pi+}I(\Omega)|\mu|d\Omega}{I_{Lam}|\mu'|} DHR=ILamμ2π+I(Ω)μdΩ
DHR has no unit.

For Lambertian Surface and no atmosphere

HDRF becomes:
H D R F = < I ( Ω ) > 0 1 π ∫ 2 π − < I ( Ω ′ ) > 0 ∣ Ω ′ ⋅ n 1 ∣ d Ω ′ = π I M HDRF=\frac{<I(\Omega)>_0}{\frac{1}{\pi}\int_{2\pi-}<I(\Omega')>_0 |\Omega'\cdot n_1|d\Omega'}=\frac{\pi I}{M} HDRF=π12π<I(Ω)>0Ωn1dΩ<I(Ω)>0=MπI
DHR becomes
D H R = ∫ 2 π + I ( Ω ) ∣ μ ∣ d Ω I L a m ∣ μ ′ ∣ = π I M DHR=\frac{\int_{2\pi+}I(\Omega)|\mu|d\Omega}{I_{Lam}|\mu'|}=\frac{\pi I}{M} DHR=ILamμ2π+I(Ω)μdΩ=MπI
BHR becomes
A = I ∫ 2 π + ∣ μ ∣ d Ω ∫ 2 π − I ( Ω ′ ) ∣ μ ′ ∣ d Ω ′ = I π M A=\frac{I\int_{2\pi+}|\mu|d\Omega}{\int_{2\pi-}I(\Omega')|\mu'|d\Omega'}=\frac{I\pi}{M} A=2πI(Ω)μdΩI2π+μdΩ=MIπ
BRF becomes:
B R F = I ( Ω ) 1 π I ( Ω ′ ) ∣ Ω ′ ⋅ n 1 ∣ = π I M BRF=\frac{I(\Omega)}{\frac{1}{\pi}I(\Omega')|\Omega'\cdot n_1|}=\frac{\pi I}{M } BRF=π1I(Ω)Ωn1I(Ω)=MπI
So they are the same.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值