The Equation of Transfer in Integral Form
Let
L
L
L be the streaming-collision operator, and
S
S
S is scattering operator, we have
L
I
=
Ω
⋅
∇
I
(
r
,
Ω
)
+
σ
(
r
,
Ω
)
I
(
r
,
Ω
)
LI=\Omega\cdot\nabla I(r,\Omega)+\sigma(r,\Omega)I(r,\Omega)
LI=Ω⋅∇I(r,Ω)+σ(r,Ω)I(r,Ω)
and
S
I
=
∫
4
π
σ
s
(
r
,
Ω
′
,
Ω
)
I
(
r
,
Ω
′
)
d
Ω
′
SI=\int_{4\pi}\sigma_s(r,\Omega',\Omega)I(r,\Omega')d\Omega'
SI=∫4πσs(r,Ω′,Ω)I(r,Ω′)dΩ′
and using
R
R
R to denote the scattering operator on the boundary
δ
V
\delta V
δV for the intensity
I
+
I^+
I+ of medium leaving radiation is introduced as
R
I
+
=
1
π
d
r
b
′
∫
2
π
−
ρ
b
μ
′
I
(
r
,
Ω
′
)
d
Ω
′
RI^+=\frac{1}{\pi}dr_b'\int_{2\pi-}\rho_b\mu'I(r,\Omega')d\Omega'
RI+=π1drb′∫2π−ρbμ′I(r,Ω′)dΩ′
Using this notions, we can wirte the stationaty radiative transfer equation as
L
I
=
S
I
+
q
,
I
−
=
R
I
+
+
q
b
LI=SI+q,\ I^-=RI^++q_b
LI=SI+q, I−=RI++qb
If
R
R
R = 0 and
q
b
=
0
q_b=0
qb=0, then the boundary value problem is called standard problem. In this case, we set use
L
0
L_0
L0 to denote the streaming-collision operator.
For standard problem, the integral need to find the
L
0
−
1
L_0^{-1}
L0−1. Let
J
=
S
I
+
q
J=SI+q
J=SI+q, and
u
u
u represetns either
S
I
SI
SI or
J
J
J, the function
v
=
L
0
−
1
u
v=L_0^{-1}u
v=L0−1u satisfies the equation
Ω
⋅
∇
v
(
r
,
Ω
)
+
σ
(
r
,
Ω
)
v
(
r
,
Ω
)
=
u
(
r
,
Ω
)
\Omega\cdot\nabla v(r,\Omega)+\sigma(r,\Omega)v(r,\Omega)=u(r,\Omega)
Ω⋅∇v(r,Ω)+σ(r,Ω)v(r,Ω)=u(r,Ω)
with zero boundary condition,
i
.
e
.
,
u
(
r
b
,
Ω
)
=
0
,
n
(
r
b
)
⋅
Ω
<
0
i.e., u(r_b,\Omega)=0, n(r_b)\cdot\Omega<0
i.e.,u(rb,Ω)=0,n(rb)⋅Ω<0.
Consider a stright line
r
b
+
η
Ω
r_b+\eta\Omega
rb+ηΩ, along an incoming direction
Ω
\Omega
Ω,
n
(
r
b
)
⋅
Ω
<
0
n(r_b)\cdot\Omega <0
n(rb)⋅Ω<0, this equation takes the following form
d
v
(
r
b
+
ξ
Ω
,
Ω
)
d
ξ
+
σ
(
r
b
+
ξ
Ω
,
Ω
)
v
(
r
b
+
ξ
Ω
,
Ω
)
=
u
(
r
b
+
ξ
Ω
,
Ω
)
,
v
(
r
b
,
Ω
)
=
0.
\frac{dv(r_b+\xi\Omega,\Omega)}{d\xi}+\sigma(r_b+\xi\Omega,\Omega)v(r_b+\xi\Omega,\Omega)=u(r_b+\xi\Omega,\Omega), v(r_b,\Omega)=0.
dξdv(rb+ξΩ,Ω)+σ(rb+ξΩ,Ω)v(rb+ξΩ,Ω)=u(rb+ξΩ,Ω),v(rb,Ω)=0.
This is an ODE w.r.t
ξ
\xi
ξ. The integral yields
v
(
r
b
+
ξ
Ω
,
Ω
)
=
∫
0
ξ
e
∫
ξ
ξ
′
σ
(
r
b
+
ξ
′
′
Ω
,
Ω
)
d
ξ
′
′
u
(
r
b
+
ξ
′
Ω
,
Ω
)
d
ξ
′
v(r_b+\xi\Omega,\Omega)=\int_0^{\xi}e^{\int_{\xi}^{\xi'}\sigma(r_b+\xi''\Omega,\Omega)d\xi''}u(r_b+\xi'\Omega,\Omega)d\xi'
v(rb+ξΩ,Ω)=∫0ξe∫ξξ′σ(rb+ξ′′Ω,Ω)dξ′′u(rb+ξ′Ω,Ω)dξ′
which is equivelent to
v
(
r
b
+
ξ
Ω
,
Ω
)
=
∫
4
π
∫
0
ξ
e
∫
ξ
ξ
′
σ
(
r
b
+
ξ
′
′
Ω
′
,
Ω
′
)
d
ξ
′
′
u
(
r
b
+
ξ
′
Ω
′
,
Ω
′
)
δ
(
Ω
,
Ω
′
)
d
Ω
′
d
ξ
′
v(r_b+\xi\Omega,\Omega)=\int_{4\pi}\int_0^{\xi}e^{\int_{\xi}^{\xi'}\sigma(r_b+\xi''\Omega',\Omega')d\xi''}u(r_b+\xi'\Omega',\Omega')\delta(\Omega,\Omega')d\Omega'd\xi'
v(rb+ξΩ,Ω)=∫4π∫0ξe∫ξξ′σ(rb+ξ′′Ω′,Ω′)dξ′′u(rb+ξ′Ω′,Ω′)δ(Ω,Ω′)dΩ′dξ′
Now, let
r
r
r and
r
′
=
r
−
ξ
′
Ω
′
r'=r-\xi'\Omega'
r′=r−ξ′Ω′ be two points on line
r
b
+
η
Ω
′
r_b+\eta\Omega'
rb+ηΩ′. The volumn elements in this point is
ξ
2
d
Ω
d
ξ
\xi^2d\Omega d\xi
ξ2dΩdξ , and
∥
r
−
r
′
∥
=
ξ
′
\|r-r'\|=\xi'
∥r−r′∥=ξ′, so
Ω
′
=
r
−
r
′
∥
r
−
r
′
∥
\Omega'=\frac{r-r'}{\|r-r'\|}
Ω′=∥r−r′∥r−r′. Then, Eq. (9) can be convert to
L
0
−
1
u
=
v
(
r
,
Ω
)
=
∫
V
e
−
τ
(
r
,
r
′
,
Ω
)
∥
r
−
r
′
∥
2
u
(
r
′
,
Ω
)
δ
(
Ω
,
r
−
r
′
∥
r
−
r
′
∥
)
d
r
′
L_0^{-1}u=v(r,\Omega)=\int_{V}\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}u(r',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|})dr'
L0−1u=v(r,Ω)=∫V∥r−r′∥2e−τ(r,r′,Ω)u(r′,Ω)δ(Ω,∥r−r′∥r−r′)dr′
Here,
τ
(
r
,
r
′
,
Ω
)
\tau(r,r',\Omega)
τ(r,r′,Ω) is the optical distance between
r
r
r and
r
′
r'
r′ along
Ω
\Omega
Ω, which is defined as
τ
(
r
,
r
′
,
Ω
)
=
∫
0
ξ
′
d
ξ
′
′
σ
(
r
−
ξ
′
′
Ω
,
Ω
)
.
\tau(r,r',\Omega)=\int_{0}^{\xi'}d\xi''\sigma(r-\xi''\Omega,\Omega).
τ(r,r′,Ω)=∫0ξ′dξ′′σ(r−ξ′′Ω,Ω).
Here, noting that original representation in Eq. (8) is from
ξ
\xi
ξ to
ξ
′
\xi'
ξ′ as dummy variable, which is discribe the integral from
r
r
r to
r
′
r'
r′. So here in Eq. (11), we integral from
0
0
0 (means r) to
ξ
′
\xi'
ξ′ (means
r
−
ξ
′
Ω
r-\xi'\Omega
r−ξ′Ω), which is defined to be
r
′
r'
r′. The Eq. (10) describe the 3-D distribution
v
(
r
,
Ω
)
v(r,\Omega)
v(r,Ω) of photons from the source
u
u
u arrive at point
r
r
r along
Ω
\Omega
Ω without suffering a collision. Substitude
u
=
S
I
u=SI
u=SI into Eq. (10) we have
I
(
r
,
Ω
)
=
∫
V
K
I
(
r
′
,
Ω
′
,
Ω
)
I
(
r
′
,
Ω
′
)
d
Ω
′
d
r
′
+
Q
(
r
,
Ω
)
I(r,\Omega)=\int_{V}\mathcal{K}_I(r',\Omega',\Omega)I(r',\Omega')d\Omega'dr' + Q(r,\Omega)
I(r,Ω)=∫VKI(r′,Ω′,Ω)I(r′,Ω′)dΩ′dr′+Q(r,Ω)
where
K
I
(
r
′
,
Ω
′
,
Ω
)
=
e
−
τ
(
r
,
r
′
,
Ω
)
∥
r
−
r
′
∥
2
σ
s
(
r
′
,
Ω
′
,
Ω
)
δ
(
Ω
,
r
−
r
′
∥
r
−
r
′
∥
)
\mathcal{K}_I(r',\Omega',\Omega)=\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}\sigma_s(r',\Omega',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|})
KI(r′,Ω′,Ω)=∥r−r′∥2e−τ(r,r′,Ω)σs(r′,Ω′,Ω)δ(Ω,∥r−r′∥r−r′)
and
Q
=
L
0
−
1
q
Q=L^{-1}_0q
Q=L0−1q is calculated using Eq. (10).
K
I
\mathcal{K}_I
KI is transition density, means that
K
I
d
r
′
d
Ω
\mathcal{K}_Idr'd\Omega
KIdr′dΩ is the probability photons which have undergone interactions at
r
′
r'
r′ in the direction
Ω
′
\Omega'
Ω′ will have their next interaction at
r
r
r along
Ω
\Omega
Ω.
We can imagine that I ( r ′ , Ω ′ ) I(r',\Omega') I(r′,Ω′) scattered to Ω \Omega Ω direction and then extincted to r r r.
Multiplying Eq. (10) using differential cattering coefficient
σ
s
\sigma_s
σs,
σ
s
L
0
−
1
u
=
σ
s
∫
V
e
−
τ
(
r
,
r
′
,
Ω
)
∥
r
−
r
′
∥
2
u
(
r
′
,
Ω
)
δ
(
Ω
,
r
−
r
′
∥
r
−
r
′
∥
)
d
r
′
\sigma_sL_0^{-1}u=\sigma_s \int_{V}\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}u(r',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|})dr'
σsL0−1u=σs∫V∥r−r′∥2e−τ(r,r′,Ω)u(r′,Ω)δ(Ω,∥r−r′∥r−r′)dr′
and integral
∫
4
π
σ
s
(
r
,
Ω
′
,
Ω
)
L
0
−
1
u
d
Ω
′
=
∫
4
π
σ
s
(
r
,
Ω
′
,
Ω
)
∫
V
e
−
τ
(
r
,
r
′
,
Ω
)
∥
r
−
r
′
∥
2
u
(
r
′
,
Ω
)
δ
(
Ω
,
r
−
r
′
∥
r
−
r
′
∥
)
d
r
′
d
Ω
′
=
S
L
0
−
1
u
\begin{aligned} &\int_{4\pi}\sigma_s(r,\Omega',\Omega)L_{0}^{-1}ud\Omega'=\\&\int_{4\pi}\sigma_s(r,\Omega',\Omega)\int_{V}\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}u(r',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|})dr'd\Omega'\\ &=SL_0^{-1}u \end{aligned}
∫4πσs(r,Ω′,Ω)L0−1udΩ′=∫4πσs(r,Ω′,Ω)∫V∥r−r′∥2e−τ(r,r′,Ω)u(r′,Ω)δ(Ω,∥r−r′∥r−r′)dr′dΩ′=SL0−1u
and the kernel
K
s
\mathcal{K_s}
Ks of integral operator
S
L
0
−
1
SL_0^{-1}
SL0−1 is
K
S
=
∫
4
π
∫
V
e
−
τ
(
r
,
r
′
,
Ω
)
∥
r
−
r
′
∥
2
σ
s
(
r
,
Ω
′
,
Ω
)
δ
(
Ω
,
r
−
r
′
∥
r
−
r
′
∥
)
\mathcal{K}_S=\int_{4\pi}\int_V\frac{e^{-\tau(r,r',\Omega)}}{\|r-r'\|^2}\sigma_s(r,\Omega',\Omega)\delta(\Omega,\frac{r-r'}{\|r-r'\|})
KS=∫4π∫V∥r−r′∥2e−τ(r,r′,Ω)σs(r,Ω′,Ω)δ(Ω,∥r−r′∥r−r′)
And the source function
J
J
J satisfies the following integral equation
J
(
r
,
Ω
)
=
S
L
0
−
1
J
+
q
=
∫
4
π
∫
V
K
S
J
(
r
′
,
Ω
′
)
d
r
′
d
Ω
′
+
q
(
r
,
Ω
)
\begin{aligned} J(r,\Omega)&=SL_0^{-1}J+q\\ &=\int_{4\pi}\int_{V}\mathcal{K}_SJ(r',\Omega')dr'd\Omega'+q(r,\Omega) \end{aligned}
J(r,Ω)=SL0−1J+q=∫4π∫VKSJ(r′,Ω′)dr′dΩ′+q(r,Ω)
The
I
I
I could be expressed via
J
J
J as
I
=
L
0
−
1
J
I=L_0^{-1}J
I=L0−1J, where
L
0
−
1
L_0^{-1}
L0−1 is in Eq. (10). In many cases, the solution to Eq. (16) is easier for Eq. (40), so using Eq. (16) and using
I
=
L
0
−
1
J
I=L_0^{-1}J
I=L0−1J is a better solution.