一些学校连接在一个计算机网络上。学校之间存在软件支援协议。每个学校都有它应支援的学校名单(学校 支援学校 ,并不表示学校 一定支援学校 )。当某校获得一个新软件时,无论是直接得到还是网络得到,该校都应立即将这个软件通过网络传送给它应支援的学校。因此,一个新软件若想让所有连接在网络上的学校都能使用,只需将其提供给一些学校即可。
任务
请编一个程序,根据学校间支援协议(各个学校的支援名单),计算最少需要将一个新软件直接提供给多少个学校,才能使软件通过网络被传送到所有学校;
如果允许在原有支援协议上添加新的支援关系。则总可以形成一个新的协议,使得此时只需将一个新软件提供给任何一个学校,其他所有学校就都可以通过网络获得该软件。编程计算最少需要添加几条新的支援关系。
输入格式
第一行是一个正整数 ,表示与网络连接的学校总数。 随后 行分别表示每个学校要支援的学校,即: 行表示第 号学校要支援的所有学校代号,最后 结束。
如果一个学校不支援任何其他学校,相应行则会有一个 。一行中若有多个数字,数字之间以一个空格分隔。
输出格式
包含两行,第一行是一个正整数,表示任务 a 的解,第二行也是一个正整数,表示任务 b 的解。
样例
输入
5
2 4 3 0
4 5 0
0
0
1 0
输出
1
2
数据范围与提示
这道题和受欢迎的牛还是有点像
sc是强连通块的块数
scc表示不同的强连通块,sz表示强连通块中的点数
入度为零的点就是需要提供软件的点,任务一的解就是入度为0的点,支援关系就是不管是入度还是出度,任务二的解是选择出度和入度中较大的点数,如果不是较大的点数,那么会出现仍然有点未被链接的情况。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stack>
#define mem(a,b) memset(a,b,sizeof(a))
const int N=202000;
typedef long long ll;
using namespace std;
struct node
{
int to,net;
} e[N];
int head[N],tot;
void add(int u,int v)
{
e[++tot].to=v;
e[tot].net=head[u];
head[u]=tot;
}
int dfn[N],low[N],cnt,s[N],tp;
int scc[N],sc;
int sz[N],n,m,out[N],in[N];
void tarjan(int u)
{
low[u]=dfn[u]=++cnt;
s[++tp]=u;
for(int i=head[u];i;i=e[i].net)
{
int v=e[i].to;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!scc[v])
low[u]=min(low[u],low[v]);
}
if(dfn[u]==low[u])
{
++sc;
while(s[tp]!=u)
{
scc[s[tp]]=sc;
sz[sc]++;
--tp;
}
scc[s[tp]]=sc,sz[sc]++,--tp;
}
}
int main()
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
{
int u,v;
while(~scanf("%d",&u)&&u)
add(i,u);
}
for(int i=1; i<=n; i++)
{
if(!dfn[i])
tarjan(i);
}
for(int u=1; u<=n; u++)
{
for(int i=head[u]; i; i=e[i].net)
{
int v=e[i].to;
if(scc[u]==scc[v]) continue;
out[scc[u]]++;
in[scc[v]]++;
}
}
int ans1=0,ans2=0;
for(int i=1; i<=sc; i++)
{
if(in[i]==0)
++ans1;
if(out[i]==0)
++ans2;
}
if(sc==1)
printf("1\n0\n");
else
printf("%d\n%d\n",ans1,max(ans1,ans2));
return 0;
}