- 博客(7)
- 收藏
- 关注
原创 【隐语实战】组件介绍与自定义开发
讲师:冯骏(蚂蚁集团隐私计算专家)隐语组件spec介绍,如何使用隐语组件(Kuscia + SecretPad)
2024-06-28 10:35:56 848
原创 【隐语实践】PPML入门/基于SPU机器学习建模实践
前端:机器学习程序编译器:生成并优化SPU的IR(PPHLO)运行时:以MPC协议的方式执行PPHLO用JAX实现明文算法参数为n_epochs迭代总轮次,n_iters每个epoch迭代次数,step_size为学习率passpass定义:使用自动梯度计算(通过jax.grad)来更新权重。权重w和偏置b初始化为0。如果启用了缓存use_cache,特征数据会被缓存。使用将特征和标签数据被分成小批次处理,记为xs和ys。使用进行指定轮次n_epochs。
2024-06-26 19:59:05 805
原创 【隐语SPU理论】密态引擎SPU框架介绍
一个虚拟加密处理设备CPU、GPU和SPU的类比CPU是一个物理、通用和快速的设备GPU是一个物理、高性能并行计算设备SPU是一个虚拟的、安全的、多个参与方的、运算相对较慢的设备。
2024-06-22 12:38:16 1740
原创 【隐语实现】XGB算法与SGB算法开发实践
常规的树模型是不区分横向和纵向概念的,纵向树模型就是基于纵向分割数据集训练的决策树模型纵向数据集一般来自于前置步骤特征隐私求交得到。 特征来自于各个参与方,只有一方拥有标签。各个参与方不期望将特征以明文的形式直接传输给其他参与方,也不希望泄漏相关重要信息。教程链接:https://www.secretflow.org.cn/zh-CN/docs/secretflow/v1.6.1b0/user_guide/mpc_ml/decision_tree。
2024-06-21 11:53:38 1571
原创 【隐语实践】逻辑回归LR与广义线性模型GLM开发实践
响应变量的分布类型支持伯努利分布、泊松分布、gamma分布和Tweedie链接函数Log: 泊松分布、gamma分布和TweedieLogit:伯努利分布tweedie的power值一般范围选择12[1,2]12ppp值根据先验知识得出。优化器选择一阶优化器SGD二阶优化器IRLS也可以采用前几轮IRLS,之后用SGDdist_scale数据方差(先验)这里,对于教程中提到的offset_col和weight_col部分的代码未在v1.6.1b0的component代码中找到。
2024-06-19 11:00:17 565
原创 基于隐私保护的机器学习算法介绍
FLModel 是 SecretFlow 提供的联邦学习的逻辑抽象,也是对用户的统一接口。SecretFlow 提供了友好的用户接口,用户可以通过 FLModel 接口轻松快速地迁移已有的明文计算模型,通过简单的迁移快速形成联邦学习能力,实现多方联合建立联合模型,学习成本低。与水平联邦相比,垂直拆分学习的架构略有不同,他的模型被拆分成 2 份、3 份或者更多,分别分布在不同的参与方。隐语提供的水平联邦学习 FLModel是一个通用的范式,而不是一个具体的模型或算法,您可以自由的定义模型和训练参数。
2024-06-13 13:10:59 1662
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人