PAT菜鸡进化史_乙级_1003
“答案正确”是自动判题系统给出的最令人欢喜的回复。本题属于 PAT 的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”。
得到“答案正确”的条件是:
1. 字符串中必须仅有 P、 A、 T这三种字符,不可以包含其它字符;
2. 任意形如 xPATx 的字符串都可以获得“答案正确”,其中 x 或者是空字符串,或者是仅由字母 A 组成的字符串;
3. 如果 aPbTc 是正确的,那么 aPbATca 也是正确的,其中 a、 b、 c 均或者是空字符串,或者是仅由字母 A 组成的字符串。
现在就请你为 PAT 写一个自动裁判程序,判定哪些字符串是可以获得“答案正确”的。
输入格式:
每个测试输入包含 1 个测试用例。第 1 行给出一个正整数 n (<10),是需要检测的字符串个数。接下来每个字符串占一行,字符串长度不超过 100,且不包含空格。
输出格式:
每个字符串的检测结果占一行,如果该字符串可以获得“答案正确”,则输出 YES,否则输出 NO。
输入样例:
8
PAT
PAAT
AAPATAA
AAPAATAAAA
xPATx
PT
Whatever
APAAATAA
输出样例:
YES
YES
YES
YES
NO
NO
NO
NO
思路:
哇这道题也是个老大难,随便一搜就可以看到有n多种解法,我这里姑且简单介绍一下我的解法叭
首先,出现且只出现一个P和一个T,且P在T之前,否则就不合法
其次,计算P之前,P和T之间,T之后的A的个数,他们满足is_legal()函数时合法,否则不合法
- 注意:这里最容易出问题的地方就在于,P和T要出现且仅出现一次(就因为忘了判断P和T是否存在,一个bug改了我俩小时orz…),且上述相同的a, b, c, x代表相同的字符串(我一开始以为是随便的,直接一串的WA,哭唧唧)
代码部分还是比较简单的:
在P未出现的时候的A就是P之前的
P出现了一次且T未出现的时候的A是P和T之间的
T出现之后的A是T之后的
is_legal()的判断也很简单,按照规则3往回迭代就可以了,直到middle_A = 1的时候用规则2判断
总体而言这道题注意一下细节就行啦!撒花花~
Code:
#include <iostream>
#include <string>
#include <vector>
bool is_legal(int front_A, int middle_A, int back_A);
int main(){
using namespace std;
int n;
while (cin >> n){
cin.get();
// store the output
vector<string> ans(n);
for (int j = 0; j < n; j++){
// input
string str;
getline(cin, str);
// calculate the number of 'A's
int front_A, middle_A, back_A, exis_P, exis_T, i;
front_A = middle_A = back_A = exis_P = exis_T = 0;
for (i = 0; i < str.size(); i++){
if (str[i] == 'A' && exis_P == 0 && exis_T == 0)
front_A++;
else if (str[i] == 'A' && exis_P == 1 && exis_T == 0)
middle_A++;
else if (str[i] == 'A' && exis_P == 1 && exis_T == 1)
back_A++;
else if (str[i] == 'P' && exis_P == 0)
exis_P++;
else if (str[i] == 'T' && exis_P == 1 && exis_T == 0)
exis_T++;
else
break;
}
if (i == str.size() && is_legal(front_A, middle_A, back_A) && exis_P && exis_T)
ans[j] = "YES\n";
else
ans[j] = "NO\n";
}
for (int j = 0; j < n; j++)
cout << ans[j];
}
return 0;
}
bool is_legal(int front_A, int middle_A, int back_A){
if(middle_A == 1 && front_A == back_A)
return true;
else if (middle_A > 1 && back_A >= front_A)
return is_legal(front_A, middle_A - 1, back_A - front_A);
else
return false;
}