匈牙利算法(二分图最大匹配;例题:HDU1083)

这篇博客介绍了匈牙利算法在解决二分图最大匹配问题的应用,详细阐述了二分图、链式前向星、最大匹配、交替路、增广路等概念,并提供了算法模板和HDU1083题目分析。通过找增广路的DFS方法求解最大匹配,判断是否满足课程代表条件。
摘要由CSDN通过智能技术生成

匈牙利算法

前导知识

  • 什么是二分图?

设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为一个二分图

简单的说就是有两个集合的点,每个集合中的点只能和另外一个集合中的点相连。

  • 链式前向星

一种存图的数据结构,相对不好写但是速度较快。

参考代码:

// 存边,其中to表示当前边指向的点,next表示下一条边
struct Edge {
   
    int to,next;
}edge[MAXM];

// head用来存起始边的编号(地址)
int head[MAXN],tot;

// 初始化
void init()
{
   
    tot=0;
    memset(head,-1,sizeof(head));
}

// 新增一条边
void addedge(int u,int v)
{
   
	// 当前边指向的点为v
    edge[tot].to=v;
    // 模拟链表,当前边的下一个边的编号(类似地址)为原来的head
    edge[tot].next=head[u];
    // 模拟链表,每次都把新的编号(地址)当做head
    head[u]=tot++;
}

// 遍历
for(int i=head[u];i!=-1;i=edge[i].next)
	操作...
  • 最大匹配

在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。

简单的说最大匹配就是最多边数的匹配,而匹配是很多条没有公共点的边。
在二分图中就是,选取一个边集,使其没有公共点,同时边数最多。

  • 交替路

从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。

也就是说这条路是这样的:
未匹配边——>匹配边——>未匹配边——>匹配边——>未匹配边
其中匹配边可以认为是最后的最大匹配中的其中一个匹配的边。

  • 增广路

若P是图G中一条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径(举例来说,有A、B集合,增广路由A中一个点通向B中一个点,再由B中这个点通向A中一个点……交替进行)。

简单的说就是从一个未匹配点(不是已有匹配边的端点)走到另一个未匹配点的一条交替路
几个性质:

  1. 未匹配边条数-1 = 匹配边条数(交题路的性质)
  2. 路径长度为奇数(显然)
  3. 进行取反操作后会产生一个更大的匹配(原来的匹配边和未匹配边互换,也就是说匹配边条数-1 = 未匹配边条数,所以会产生一个更大的匹配)

算法:匈牙利算法

这个算法的核心就是:

一个匹配是最大匹配的充要条件是不存在增广路——from 蓝书(刘汝佳&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值