题意:
③后一半是)
解题思路:
* O( n )的预处理。很显然需要统计一下每个位置前面的(有多少个,后面的)有多少个,才可以方便计数。
* 算出对每一个位置前后的()有多少种匹配,为了保证不重复,所以我们要求一定要使用当前位置的(,设当前位置前面有n个(包括本身,后面有m个)。所以对于每一个(出现的位置,可能有的总的组合数为 ∑ni=1(Ci−1n−1∗Cim) 如果 n>m ,对应位置组合数为0,结论不变。
* ∑ni=1(Ci−1n−1∗Cim) = ∑ni=1(Cn−in−1∗Cim) = Cnn+m−1 (最后一步由范德蒙恒等式证) 并且由最后的结果可以看出
问你一共有多少个子串,满足下列条件:
①长度为偶数
②前一半是(③后一半是)
④子串不必要连续。
解题思路:
首先需要知道一个公式
解题思路:
* O( n )的预处理。很显然需要统计一下每个位置前面的(有多少个,后面的)有多少个,才可以方便计数。
* 算出对每一个位置前后的()有多少种匹配,为了保证不重复,所以我们要求一定要使用当前位置的(,设当前位置前面有n个(包括本身,后面有m个)。所以对于每一个(出现的位置,可能有的总的组合数为 ∑ni=1(Ci−1n−1∗Cim) 如果 n>m ,对应位置组合数为0,结论不变。
* ∑ni=1(Ci−1n−1∗Cim) = ∑ni=1(Cn−in−1∗Cim) = Cnn+m−1 (最后一步由范德蒙恒等式证) 并且由最后的结果可以看出
PS:注意inv[i]为i的阶乘的逆元
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD = 1e9+7;
const int N = 200005;
ll inv[N], fact[N];
int l[N], r[N];
char s[N];
ll C(int n, int m)
{
return fact[n+m-1]*inv[n]%MOD*inv[m-1]%MOD;
}
int power_mod(int a, int index)
{
int ret = 1;
while (index)
{
if (index & 1)
{
ret = 1ll * ret * a % MOD;
}
a = 1ll * a * a % MOD;
index >>= 1;
}
return ret;
}
void init()
{
fact[0] = 1;
for(int i = 1; i < N; i++)
fact[i] = fact[i-1] * i % MOD;
inv[N - 1] = power_mod(fact[N - 1], MOD - 2);
for (int i = N - 2; i >= 0; -- i)
{
inv[i] = 1ll * inv[i + 1] * (i + 1) % MOD;
}
}
int main()
{
init();
while(scanf("%s", s+1) != EOF)
{
int len = strlen(s+1);
l[0] = r[len+1] = 0;
for(int i = 1; i <= len; i++)
l[i] = l[i-1] + (s[i] == '(');
for(int i = len; i >= 1; i--)
r[i] = r[i+1] + (s[i] == ')');
ll ans = 0;
for(int i = 1; i <= len; i++)
{
if(s[i] != '(') continue;
ans = (ans + C(l[i], r[i])) % MOD;
}
printf("%I64d\n", ans);
}
return 0;
}