Codeforces785D. Anton and School - 2(组合数学)

本文介绍了一种算法,用于计算字符串中满足特定条件的子串数量。这些子串长度为偶数,且由括号组成,前半部分为左括号(,后半部分为右括号)。文章详细阐述了O(n)预处理方法,并通过实例代码展示了如何利用组合数学中的概念进行高效计算。
摘要由CSDN通过智能技术生成
题意: 

问你一共有多少个子串,满足下列条件: 

①长度为偶数 

②前一半是( 
③后一半是) 

④子串不必要连续。


解题思路: 

首先需要知道一个公式


解题思路: 
* O( n )的预处理。很显然需要统计一下每个位置前面的(有多少个,后面的)有多少个,才可以方便计数。 
* 算出对每一个位置前后的()有多少种匹配,为了保证不重复,所以我们要求一定要使用当前位置的(,设当前位置前面有n个(包括本身,后面有m个)。所以对于每一个(出现的位置,可能有的总的组合数为  ni=1(Ci1n1Cim)  如果 n>m ,对应位置组合数为0,结论不变。 
ni=1(Ci1n1Cim)  =  ni=1(Cnin1Cim)  =  Cnn+m1  (最后一步由范德蒙恒等式证) 并且由最后的结果可以看出 


PS:注意inv[i]为i的阶乘的逆元

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD = 1e9+7;
const int N = 200005;
ll inv[N], fact[N];
int l[N], r[N];
char s[N];
ll C(int n, int m)
{
    return fact[n+m-1]*inv[n]%MOD*inv[m-1]%MOD;
}
int power_mod(int a, int index)
{
    int ret = 1;
    while (index)
    {
        if (index & 1)
        {
            ret = 1ll * ret * a % MOD;
        }
        a = 1ll * a * a % MOD;
        index >>= 1;
    }
    return ret;
}
void init()
{
    fact[0] = 1;
    for(int i = 1; i < N; i++)
        fact[i] = fact[i-1] * i % MOD;
    inv[N - 1] = power_mod(fact[N - 1], MOD - 2);
    for (int i = N - 2; i >= 0; -- i)
    {
        inv[i] = 1ll * inv[i + 1] * (i + 1) % MOD;
    }
}
int main()
{
    init();
    while(scanf("%s", s+1) != EOF)
    {
        int len = strlen(s+1);
        l[0] = r[len+1] = 0;
        for(int i = 1; i <= len; i++)
            l[i] = l[i-1] + (s[i] == '(');
        for(int i = len; i >= 1; i--)
            r[i] = r[i+1] + (s[i] == ')');
        ll ans = 0;
        for(int i = 1; i <= len; i++)
        {
            if(s[i] != '(') continue;
            ans = (ans + C(l[i], r[i])) % MOD;
        }
        printf("%I64d\n", ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值