锵锵!欢迎来到第二部分——浮点数在内存中的存储!
常⻅的浮点数:3.14159、1E10等,浮点数家族包括: float、double、long double 类型。
浮点数表⽰的范围:float.h中定义
先请大家看一段代码:
#include <stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
大家认为上面这些值都是多少呢?9?9.0?那么我们运行一下,让大家瞧一瞧答案究竟是多少?
看到答案,大家是不是有点懵呢,明明自己想的输出应该是9,9.0,9,9.0,答案却只对了第一个和最后一个,那么就请我为大家分析一下
根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:
V = (−1) ∗ S M ∗ 2E
• (−1)^S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
• M 表⽰有效数字,M是⼤于等于1,⼩于2的
• 2^E 表⽰指数位
举个例子,char a=5.5,那么十进制的5.5,写成二进制就是101.1,因为0.1就是2^(-1),而这也就相当于1.011*2 ^ 2,这样S=0,M=1.011,E=2
而浮点数又是以怎样的方式存储在数据里的呢?再看两张图:
这样,我们就可以试试写下5.5在内存中的二进制存储形式
在写之前,还有一些问题需要解决:
①IEEE 754规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
②⾸先,E为⼀个⽆符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0 ~ 255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
那么认识完这些问题之后,我们就终于可以开始尝试存储5.5了
首先S=0,E=2,M=1.011
5.5二进制:
0 10000001 011 00000000000000000000
当然存进去了,我们还要进行取出计算,而取出也有一些学问在里面
- E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位的0- E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。- E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s)
现在,我们终于扫清了我们解题路上的障碍,可以打败最终的大魔王了!
#include <stdio.h>
int main()
{
int n = 9;//n=9,9是以整型方式存储进入内存
//所以为 00000000 00000000 00000000 00001001
float* pFloat = (float*)&n;
printf("n的值为:%d\n", n);//n本来就是整型,自然输出原本值
printf("*pFloat的值为:%f\n", *pFloat);//pFloat只是把地址移到了整型n的地址上
//在这里,取出n的过程要按照浮点数
//很明显存储E的8个比特位全都是0,所以此时*pFloat接近于0,故输出0.000000
*pFloat = 9.0;//再在pFloat的地址上存储一个浮点数9.0
printf("num的值为:%d\n", n);//以整型取出方式
//9.0——1001.0——1.001*2^3
//(-1)^0*1.001*2^3,S=0,E=3,M=1.001,E+127=130
//0 10000010 001 00000000000000000000
//而如果按照整型来看的话:01000001 00010000 00000000 00000000
//转换成十进制刚好就是1091567616
printf("*pFloat的值为:%f\n", *pFloat);//而这里是以浮点数形式打印
//本来存的就是浮点数,自然输出就是9.000000
return 0;
}
看完解释,大家有没有懂一点呢?是否能够熟练了解整型与浮点数在内存中是如何存储的,并且知道是如何被取出的?
不管怎么样,我相信大家都对此有了一个更深刻的理解,也能在后期使用时不会再犯一些低级错误
如果大家还有什么问题,也欢迎与我探讨!