快速幂与矩阵快速幂

文章介绍了快速幂算法的实现,包括整数快速乘和快速幂运算,并详细阐述了矩阵快速幂的概念,利用矩阵乘法的性质高效解决递推序列问题。通过斐波那契数列和几个实例展示了如何设计转移矩阵和初始化答案矩阵,以及如何运用矩阵快速幂模板进行计算。
摘要由CSDN通过智能技术生成

一: 快速幂

快速乘

ll mul(ll a,ll b){
	ll res=0;
	while(b){
		if(b&1) res=(res+a)%mod;
		a=(a<<1)%mod;
		b>>=1;
	}
	return res;
}

快速幂

int quick_pow(int a,int b){
	int res=1;
	while(b){
		if(b&1) res=(ll)res*a%mod;
		a=(ll)a*a%mod;
		b>>=1;
	}
	return res;
}

二: 矩阵快速幂

单位矩阵:从左上角到右下角均为 1

$A$$n* m$ 矩阵, $B$$m* p$ 矩阵,则 $C=A* B$ 是 $n* p$ 矩阵,并且 ${\forall}i\in[1,n],{\forall}j\in[1,p]$ 
$C[i][k]=\sum_{j=1}^{m}A[i][j]* B[j][k]$
矩阵乘法满足结合律,满足分配律,不满足交换律。

存储习惯:习惯使用结构体,在结构体中定义数组,定义矩阵的长和宽

struct node{
	int m[N][N];
	int x,y;
};
做题关键:

首先要设计转移矩阵,以斐波那契数列为例:

f[n]=f[n-1]+f[n-2] ,因此我们设计转移矩阵就按照 f[n-1],f[n-2] 前面的系数来写,因此转移矩阵为  A=\bigl(\begin{smallmatrix} 1~1 & \\ 1~0& \end{smallmatrix}\bigr) ,答案矩阵为  ans=\bigl(\begin{smallmatrix} 1\\ 1 \end{smallmatrix}\bigr)

 f[n] 等于 转移矩阵 * 答案矩阵 \bigl(\begin{smallmatrix} f[n-1]\\f[n-2] \end{smallmatrix}\bigr),得到新的答案矩阵 \bigl(\begin{smallmatrix} f[n]\\ f[n-1] \end{smallmatrix}\bigr) ,因此求斐波那契数列的第 n 项,则 ans=A^{n-2} * ans,答案即为  ans.m[1][1]

例如:

f[n]=a*f[n-1]+b*f[n-2],则转移矩阵为 A=\bigl(\begin{smallmatrix} a &b \\ 1& 0 \end{smallmatrix}\bigr),答案矩阵为ans_1=\bigl(\begin{smallmatrix} f[2]\\ f[1] \end{smallmatrix}\bigr),因此  ans_{n-2}=\bigl(\begin{smallmatrix} f[n-1]\\ f[n-2] \end{smallmatrix}\bigr)ans_{n-1}=\bigl(\begin{smallmatrix} f[n]\\ f[n-1] \end{smallmatrix}\bigr),所以最终答案矩阵为A^{n-2}*ans_1,答案为ans.m[1][1]

因此对于答案矩阵来说,经常是一个竖着的 x=t ,y=1 的矩阵,其中 t 为我们得到 f[n] 所要用到的参数个数,例如斐波那契数列即是 t=2

例题

1. A - Fibonacci

矩阵快速幂模板题

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int mod=10000;
struct node{
	int m[3][3];
};
int n;
node mul(node a,node b){
	node res;
	memset(res.m,0,sizeof(res.m));
	for(int i=1;i<=2;i++){
		for(int j=1;j<=2;j++){
			for(int k=1;k<=2;k++){
				res.m[i][k]=(res.m[i][k]+a.m[i][j]*b.m[j][k]%mod)%mod;
			}
		}
	}
	return res;
}
node quick_pow(node a,int b){
	node res;
	memset(res.m,0,sizeof(res.m));
	res.m[1][1]=1; res.m[2][2]=1;
	while(b){
		if(b&1) res=mul(res,a);
		a=mul(a,a);
		b>>=1;
	}
	return res;
}
int main(){
	while(scanf("%d",&n)){
		if(n==-1) break;
		node ans;
		ans.m[1][1]=1; ans.m[1][2]=1; ans.m[2][1]=1; ans.m[2][2]=0;
		ans=quick_pow(ans,n);
		printf("%d\n",ans.m[2][1]);
	}
	return 0;
}
2. C - A Simple Math Problem

题目大意:

当 x<10f(x)=x

当 x\geq 10f(x)=a_0 * f(x-1) + a_1 * f(x-2) + a_2 * f(x-3) +\cdots \cdots + a_9 * f(x-10)

因此转移矩阵为\begin{pmatrix} a_0 & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 &a_8 &a_9 \\ 1& 0 &0 &0 & 0 & 0 & 0 & 0 & 0 &0 \\ 0& 1 &0 &0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0& 0 &1 &0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0& 0 &0 &1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0& 0 &0 &0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0& 0 &0 &0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0& 0 &0 &0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0& 0 &0 &0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0& 0 &0 &0 & 0 & 0 & 0 & 0 & 1 & 0\\ \end{pmatrix},就是 A.m[1][j]=a[j-1],~A.m[i+1][i]=1,它们的下标都是从 1 开始的,矩阵里的也是。

初始答案矩阵为 \begin{pmatrix} f(9)\\ f(8)\\ f(7)\\ f(6)\\ f(5)\\ f(4)\\ f(3)\\ f(2)\\ f(1)\\ f(0) \end{pmatrix},得到最终的答案矩阵之前的一个矩阵是 \begin{pmatrix} f(n-1)\\ f(n-2)\\ f(n-3)\\ f(n-4)\\ f(n-5)\\ f(n-6)\\ f(n-7)\\ f(n-8)\\ f(n-9)\\ f(n-10) \end{pmatrix},最终答案为 A^{n-9}*ans_1

#include<bits/stdc++.h>
using namespace std;
#define ll long long
struct node{
	int m[15][15];
	int x,y;
};
int n,mod;
node mul(node a,node b){
	node res;
	memset(res.m,0,sizeof(res.m));
	res.x=a.x; res.y=b.y;
	for(int i=1;i<=a.x;i++)
		for(int j=1;j<=a.y;j++)
			for(int k=1;k<=b.y;k++)
				res.m[i][k]=(res.m[i][k]+(ll)a.m[i][j]*b.m[j][k]%mod)%mod;
	return res;
}
node quick_pow(node a,int b){
	node res;
	memset(res.m,0,sizeof(res.m));
	res.x=10; res.y=10;
	for(int i=1;i<=10;i++) res.m[i][i]=1;
	while(b){
		if(b&1) res=mul(res,a);
		a=mul(a,a);
		b>>=1;
	}
	return res;
}

int main(){
	while(scanf("%d%d",&n,&mod)!=EOF){
		node ans,a;
		memset(a.m,0,sizeof(a.m));
		a.x=10; a.y=10;
		for(int i=1;i<=10;i++){
			int x;
			scanf("%d",&x);
			a.m[1][i]=x;
			a.m[i+1][i]=1;
		}
		if(n<=9){
			printf("%d\n",n%mod);
			continue;
		}
		a=quick_pow(a,(n-9));
		memset(ans.m,0,sizeof(ans.m));
		ans.x=10; ans.y=1;
		for(int i=1;i<=10;i++) ans.m[i][1]=10-i;
		ans=mul(a,ans);
		printf("%d\n",ans.m[1][1]);
	}
	return 0;
}
3. D - Recursive sequence

此题给出递推式 f(n)=f(n-1)+2*f(n-2)+n^4,让你求出 f(n),已给出f(1),f(2)

此题难点在于转移矩阵的设计,前两个参数已由题目给出,分别为 1,2,现在就是解决如何使得 n^4  由与 n-1 相关的东西得到。由于

n^4=((n-1)+1)^4=C_4^0(n-1)^4+C_4^1(n-1)^3+C_4^2(n-1)^2+C_4^3(n-1)^1+C_4^4=(n-1)^4+4\times (n-1)^3+6\times (n-1)^2+4\times (n-1)+1

n^3=(n-1)^3+3\times (n-1)^2+3\times (n-1)+1

n^2=(n-1)^2+2\times (n-1)+1

n=(n-1) +1

1=1

因此由上式可得我们需要用到 n^4,n^3,n^2,n,1,因此转移矩阵

A=\begin{pmatrix} 1 &2 &1 &4 &6 &4 &1 \\ 1 & 0 & 0 &0 & 0 & 0 & 0\\ 0 & 0 & 1 & 4 & 6 & 4 & 1\\ 0 & 0 & 0 & 1 & 3 & 3 & 1\\ 0 & 0 & 0 & 0 & 1 & 2 & 1\\ 0 & 0 & 0 & 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix},初始答案矩阵ans_1=\begin{pmatrix} f(2)\\ f(1)\\ 2^4\\ 2^3\\ 2^2\\ 2\\ 1 \end{pmatrix},最终的答案矩阵的前一个矩阵为\begin{pmatrix} f(n-1)\\ f(n-2)\\ (n-1)^4\\ (n-1)^3\\ (n-1)^2\\ (n-1)\\ 1 \end{pmatrix},得到最终答案矩阵\begin{pmatrix} f(n)\\ f(n-1)\\ n^4\\ n^3\\ n^2\\ n\\ 1 \end{pmatrix}=A^{n-2}*ans_1

注意开 long ~long

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod=2147493647;

struct node{
	ll m[8][8];
	int x,y;
};
node mul(node a,node b){
	node res;
	memset(res.m,0,sizeof(res.m));
	res.x=a.x; res.y=b.y;
	for(int i=1;i<=a.x;i++)
		for(int j=1;j<=a.y;j++)
			for(int k=1;k<=b.y;k++){
				res.m[i][k]=(res.m[i][k]+(ll)a.m[i][j]*b.m[j][k]%mod)%mod;
			}
				
	return res;
}
node quick_pow(node a,int b){
	node res;
	memset(res.m,0,sizeof(res.m));
	res.x=7; res.y=7;
	for(int i=1;i<=7;i++) res.m[i][i]=1;
	while(b){
		if(b&1) res=mul(res,a);
		a=mul(a,a); b>>=1;
	}
	return res;
}
int T;
int main(){
	scanf("%d",&T);
	ll p[8][8]=
	{0,0,0,0,0,0,0,0,
	 0,1,2,1,4,6,4,1, 	 
	 0,1,0,0,0,0,0,0, 
	 0,0,0,1,4,6,4,1, 
	 0,0,0,0,1,3,3,1, 
	 0,0,0,0,0,1,2,1, 
	 0,0,0,0,0,0,1,1, 
	 0,0,0,0,0,0,0,1,	
	};
	
	while(T--){
		ll A,B,n;
		scanf("%lld%lld%lld",&n,&A,&B);
		node a,ans;
		memset(a.m,0,sizeof(a.m));
		a.x=7; a.y=7;
		for(int i=1;i<=7;i++)
			for(int j=1;j<=7;j++)
				a.m[i][j]=p[i][j];
		if(n==1){
			printf("%d\n",A%mod);
			continue;
		}
		else if(n==2){
			printf("%d\n",B%mod);
			continue;
		}
		a=quick_pow(a,(n-2));
		memset(ans.m,0,sizeof(ans.m));
		ans.x=7; ans.y=1;
		ans.m[1][1]=B; ans.m[2][1]=A; ans.m[3][1]=16; ans.m[4][1]=8;
		ans.m[5][1]=4; ans.m[6][1]=2; ans.m[7][1]=1;
		ans=mul(a,ans);
		printf("%lld\n",ans.m[1][1]);
	}
	
	return 0;
}

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值