洗牌,及把一个有序的数组打乱,使每个元素位置随机,是一个经典算法问题。一个易于理解的方法是为每个元素分配一个随机数,并按照该随机数进行排序。该方法可以保证元素位置随机,但是时间复杂度取决于排序算法,及最快只能为O(nlogn)
有一种洗牌算法可以实现O(n)时间复杂度,叫做Knuth shuffle。该方法从第一个元素开始,每次把当前索引的元素和索引为[0, i]之间一个随机数的元素交换,直到遍历整个数组。示例代码如下
// the "sort" here refers to shuffle
public static void sort(Comparable[] a) {
for (int i = 0; i < a.length; i++) {
int index = StdRandom.uniform(i + 1);
exch(a, i, index);
}
}
洗牌算法看起来简单,但其实要保证高效率和随机性的难度很大。如使用本算法一定要注意选择和当前元素交换的另一元素必须从0到i之间选。一个常见错误是在0到a.length中抽随机数,这么做会降低排序随机性