#动态规划dp入门

什么是动态规划呢?
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。我们简称dp

动态规划问题的一般分类:
动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类。
举例:
线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等;
区域动规:石子合并, 加分二叉树,统计单词个数,炮兵布阵等;
树形动规:贪吃的九头龙,二分查找树,聚会的欢乐,数字三角形等;
背包问题:01背包问题,完全背包问题,分组背包问题,二维背包,装箱问题,挤牛奶(同济ACM第1132题)等;
应用实例
最短路径问题 ,项目管理,网络流优化等;

概念意义:
动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不像搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。

入门题举例(POJ1163):
数字三角形问题:在数字三角形中寻找一条从顶部到底部的路径,使得路径上所经过的数字之和最大。路径上的每一步只能往左下或右下走。只需要求出这个最大和即可,不必给出具体路径。(三角形的行数大于1小于等于100,数字为0-99)

解题思路:

用二维数组存放数字三角形。
D(r,j):第r行第j个数字(r,j从1开始算)
MaxSum(r,j):从D(r,j)到底边的各条路径中,最佳路径的数字之和。
问题:求MaxSum(1,1)

dp往往与递归密不可分。
D(r,j)出发,下一步只能走D(r+1,j)或者D(r+1,j+1)。故对于N行的三角形:
if(r==N)
	MaxSum(r,j)=D(r,j)
else
	MaxSum=Max{
   MaxSum(r+1,j),Maxsum(r+1,j+1)}+D(r,j)	

代码

#include <iostream>
#include <algorithm>
using namespace std;
#define MAX 101
int D[MAX][MAX];int n;
int maxSum[MAX][MAX];

int MaxSum(int i,int j){
   
	if(maxSum[i][j]!=-1)
		return maxSum[i][j];
	if(i==n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值