GNN图数据相关任务的分类

	一、节点层面的任务:
	节点层面的任务主要包括分类任务和回归任务。
	这类任务虽然是对节点层面的性质进行预测,但是显然不应该将模型建立在一个个单独的节点上,节点的关系也需要考虑。
	节点层面的任务有很多,包括学术上使用较多的对论文引用网络中的论文节点进行分类,工业界在线社交网络中用户标签的分类、恶意账户检测等。
	
	二、边层面的任务:
	边层面的任务主要包括边的分类和预测任务。
	边的分类是指对边的某种性质进行预测;边预测是指给定的两个节点之间是否会构成边。
	常见的应用场景比如在社交网络中,将用户作为节点,用户之间的关注关系建模为边,通过边预测实现社交用户的推荐。
	目前,边层面的任务主要集中在推荐业务中。
	
	三、图层面的任务:
	图层面的任务不依赖于某个节点或者某条边的属性,而是从图的整体结构出发,实现分类、表示和生成等任务。
	目前,图层面的任务主要应用在自然科学研究领域,比如对药物分子的分类、酶的分类等。
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
神经网络(Graph Neural Network, GNN)是一类基于的深度学习模型,主要用于处理数据。对于任务(Graph-level Task),GNN可以学习整个的特征,从而进行分类、回归等任务。下面是一个使用PyTorch实现GNN任务分类代码示例。 首先,我们需要导入必要的库: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import DataLoader from torch.utils.data import Dataset from sklearn.model_selection import train_test_split import numpy as np import networkx as nx ``` 接着,我们定义一个数据集类,用于加载数据。这里假设每个都由一个邻接矩阵和一个标签组成。我们使用NetworkX库生成,然后将邻接矩阵和标签转换为PyTorch张量。 ```python class GraphDataset(Dataset): def __init__(self, graphs, labels): self.graphs = graphs self.labels = labels def __len__(self): return len(self.labels) def __getitem__(self, idx): graph = self.graphs[idx] label = self.labels[idx] adj = nx.to_numpy_matrix(graph) adj = torch.from_numpy(adj).float() label = torch.tensor(label).long() return adj, label ``` 接着,我们定义一个GNN模型。这里我们使用基于消息传递的GNN模型,具体来说就是每个节点会接收相邻节点的信息,并结合自身特征,生成新的节点特征表示。我们使用两层GraphConv层来实现这个过程。最后,我们将整个的特征汇总,并通过一个全连接层进行多分类。 ```python class GNN(nn.Module): def __init__(self, in_dim, hidden_dim, out_dim): super(GNN, self).__init__() self.conv1 = GraphConv(in_dim, hidden_dim) self.conv2 = GraphConv(hidden_dim, hidden_dim) self.fc = nn.Linear(hidden_dim, out_dim) def forward(self, adj): x = F.relu(self.conv1(adj)) x = F.relu(self.conv2(adj)) x = x.mean(dim=0) x = self.fc(x) return x ``` 接着,我们定义一个GraphConv层,它可以接收邻接矩阵和节点特征表示,并计算出每个节点的新特征表示。这里我们使用类似于卷积神经网络的方式来实现。 ```python class GraphConv(nn.Module): def __init__(self, in_dim, out_dim): super(GraphConv, self).__init__() self.lin = nn.Linear(in_dim, out_dim) def forward(self, adj): x = adj.mm(self.lin(weight)) x = x / adj.sum(dim=1, keepdim=True) return x ``` 接着,我们加载数据集,并进行训练和测试。这里我们使用交叉熵损失函数和Adam优化器。 ```python # Load data graphs = [...] # a list of NetworkX graphs labels = [...] # a list of labels train_data, test_data, train_labels, test_labels = train_test_split(graphs, labels, test_size=0.2, random_state=42) train_dataset = GraphDataset(train_data, train_labels) test_dataset = GraphDataset(test_data, test_labels) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False) # Train model model = GNN(in_dim=10, hidden_dim=32, out_dim=5) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.01) for epoch in range(10): for adj, label in train_loader: optimizer.zero_grad() output = model(adj) loss = criterion(output, label) loss.backward() optimizer.step() # Evaluate model model.eval() correct = 0 total = 0 for adj, label in test_loader: output = model(adj) _, predicted = torch.max(output.data, 1) total += label.size(0) correct += (predicted == label).sum().item() accuracy = 100 * correct / total print("Accuracy: {:.2f}%".format(accuracy)) ``` 这个示例代码演示了如何使用GNN进行任务的多分类。你可以根据自己的数据集和需求,调整模型结构和超参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值