LightOJ 1282 Leading and Trailing(取n^k的最高三位数字)

题目链接:
LightOJ 1282 Leading and Trailing
题意:
给出n和k求出n^k的高三位和低三位。
分析:
低三位别忘了%03d输出啊!
高三位取log瞎搞啊!

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <climits>
#include <cmath>
#include <ctime>
#include <cassert>
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
using namespace std;
typedef long long ll;
const ll mod = 1000;

int T, cases = 0;
ll high, low, n, k;

ll quick_pow(ll a, ll b)
{
    ll res = 1, tmp = a % mod;
    while(b){
        if(b & 1) res = res * tmp % mod;
        tmp = tmp * tmp % mod;
        b >>= 1;
    }
    return res % mod;
}

int main()
{
    scanf("%d", &T);
    while(T--){
        scanf("%lld%lld", &n, &k);
        low = quick_pow(n, k);
        double t = 1.0 * k * log10(n * 1.0);
        ll m = (ll)(floor(t));
        high = (ll)(pow(10.0, t - m + 2.0));
        //high = (ll) pow(10.0, 2.0 + fmod(1.0 * k * log10(n * 1.0), 1));
        printf("Case %d: %lld %03lld\n", ++cases, high, low);
    }
    return 0;
}
Sigma函数是指一个数字的所有因子之和。给定一个数字n,需要出有多少个数字的Sigma函数是偶数。\[2\] 为了解决这个问题,可以先筛选出n范围内的素数(范围在10^6即可),然后对n进行素因子分解。对于每个因子,如果它的Sigma函数中连乘的每一项都是偶数,那么整个Sigma函数就是偶数。具体实现中,可以判断每个因子的平方根是否为偶数,如果是偶数,则减去(平方根+1)/2。\[1\] 另外,还可以使用O(1)的做法来解决这个问题。根据观察,所有的完全平方数及其两倍的值都会导致Sigma函数为偶数。因此,可以直接计算n的平方根,然后减去(平方根+1)/2即可得到结果。\[3\] #### 引用[.reference_title] - *1* [Sigma Function](https://blog.csdn.net/PNAN222/article/details/50938232)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【LightOJ1336】Sigma Function(数论)](https://blog.csdn.net/qq_30974369/article/details/79009498)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值