HDU 4408 Minimum Spanning Tree(最小生成树计数)

题目链接:
HDU 4408 Minimum Spanning Tree
题意:
n 个点和m条边,求生成最小生成树的方案数?答案模 p .
数据范围:n100,m1000,p1010
分析:
在用 Kruskal 算法求最小生成树时,我们的做法是: 将图 G=V,E 中的所有边按照权值由小到大进行排序,等长的边可以按照任意顺序; 然后从小到大扫描每一条边,将未连通的点连通,权值累加, 最后得到的图 G 就是图 G 的最小生成树。
将所有权值相同的边看成一个阶段整体处理,这一阶段生成树个数和下一阶段是独立的。
我们将求最小生成树时所用的祖先存进father数组,将连通块的祖先存进 U 数组(相当于连通块缩成点)。用vis[i]=1标记连通块的祖先。用 link[i][j] 表示两个原本独立的连通块(祖先分别为 ij )的连通分量的度(连通的边数)。
在用 MatrixTree 时,邻接矩阵中 A[i][j] v[i]v[j] 之间的边数,而不是一直是 0 1
对于加入相同权值 same 后的新图可能会形成多个连通块,这是需要对每个连通块计数。找到每个连通块的祖先,将属于这个祖先的点计算。

  • 确定祖先和该连通块的所有点

首先寻找的连通块应含有新加进来的边,否则如果该连通块和未加边的连通块(上一阶段的)完全一样,那就重复计数了。所以在加边时用 vis 数组记录 father 数组中的祖先是否被访问,如果被访问那么将属于这个连通块的所有点看成一个点,添加进新图的连通块,将新图的连通块中的每一个点都存在祖先的数组 vec 中。

  • 确定连通块内的点与点是否直接连通和每个点的度数

枚举每个新图的连通块的祖先,在 MatrixTree 中,图 G 的邻接矩阵A[G]被定义为:当 v[i]v[j] 直接相连时, A[i][j]=1 ,否则 A[i][j]=0 。但是由于这里我们将旧图的连通块缩点了,那么新图的点与点应看成是旧图的连通块与连通块,所以新图的邻接矩阵应是点与点的边数,而不是非 0 1的关系(而且 link[i][j]=link[j][i] )。

我们对新图的每个连通块求生成树的个数,然后累乘,将所有连通块求完后需要清空 vec 数组。同时还要把 U 数组和father数组更新,因为这时所有的新连通块和旧图的连通块都要合并成一个新的连通块。
最后还要检查图是否连通了(所有点的公共祖先是否一样)。
时间复杂度不好确定。

#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <vector>
using namespace std;
typedef long long ll;
const int MAX_N = 110;
const int MAX_M = 1010;

ll mod;
int vis[MAX_N], fa[MAX_N], U[MAX_N], link[MAX_N][MAX_N];
vector<int> vec[MAX_N];
ll C[MAX_N][MAX_N];

struct Edge{
    int u, v, w;

    Edge () {}
    Edge (int _u, int _v, int _w): u(_u), v(_v), w(_w) {}
    bool operator < (const Edge& rhs) const {
        return w < rhs.w;
    }
}edge[MAX_M];

void init(int n)
{
    memset(link, 0, sizeof(link));
    memset(vis, 0, sizeof(vis));
    for(int i = 0; i < n; ++i) {
        fa[i] = i;
    }
}

inline int find(int x, int arr[])
{
    return arr[x] == x ? x : arr[x] = find(arr[x], arr);
}

ll det (ll mat[][MAX_N], int n)
{
    for(int i = 0; i < n; ++i) {
        for(int j = 0; j < n; ++j) {
            mat[i][j] = (mat[i][j] % mod + mod) % mod;
        }
    }
    ll res = 1;
    int cnt = 0;
    for(int i = 0; i < n; ++i) {
        for(int j = i + 1; j < n; ++j) {
            while(mat[j][i]) {
                ll t = mat[i][i] / mat[j][i];
                for(int k = i; k < n; ++k) {
                    mat[i][k] = (mat[i][k] - mat[j][k] * t) % mod;
                    swap(mat[i][k], mat[j][k]);
                }
                cnt ++;
            }
        }
        if(mat[i][i] == 0) return 0;
        res = res * mat[i][i] % mod;
    }
    if(cnt & 1) res = -res;
    return (res + mod) % mod;
}

ll solve(int n, int m)
{
    sort(edge, edge + m);
    int same = -1;
    ll ans = 1;
    for(int i = 0; i <= m; ++i) {
        if(edge[i].w != same || i == m) {
            for(int j = 0; j < n; ++j) {
                if(vis[j]) {  //旧图以j为祖先的连通块被访问
                    int fj = find(j, U); //找到连通块所在连通块
                    vec[fj].push_back(j);
                    fa[j] = fj;
                    vis[j] = 0;
                }   
            }
            for(int j = 0; j < n; ++j) {
                int size = vec[j].size(); //扫描新图的每一个连通块
                if(size <= 1) continue;
                memset(C, 0, sizeof(C));
                for(int k = 0; k < size; ++k) {
                    for(int h = k + 1; h < size; ++h) {
                        int u = vec[j][k];
                        int v = vec[j][h]; //u和v是j这个连通块内的两个点
                        C[k][h] -= link[u][v]; //link[u][v]表示u和v的连通边数
                        C[h][k] = C[k][h]; 
                        C[k][k] += link[u][v];
                        C[h][h] += link[v][u]; //对对角线元素添加连通度(连通的边数)
                    }
                }
                ans = ans * det(C, size - 1) % mod;
            }
            for(int j = 0; j < n; ++j) {
                U[j] = fa[j] = find(j, fa);
                vec[j].clear();
            }

            if(i == m) break;
            same = edge[i].w;
        }
        int u = edge[i].u, v = edge[i].v;
        int fu = find(u, fa), fv = find(v, fa);
        if(fu == fv) continue;
        vis[fu] = vis[fv] = 1;
        U[find(fv, U)] = find(fu, U);
        link[fu][fv]++, link[fv][fu]++;
    }
    int flag = 1, com = find(0, fa);
    for(int i = 1; i < n; ++i) { //检验是否所有点都连通
        if(com != find(i, fa)) {
            flag = 0;
            break;
        }
    }
    if(flag == 0) ans = 0;
    return (ans + mod) % mod;
}

int main()
{
    int n, m;
    while(~scanf("%d%d%lld", &n, &m, &mod) && (n || m || mod)) {
        init(n);    
        for(int i = 0; i < m; ++i) {
            int u, v, w;
            scanf("%d%d%d", &u, &v, &w);
            edge[i] = Edge(u - 1, v - 1, w);
        }
        printf("%lld\n", solve(n, m));
    }   
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值