ramay7

https://ramay7.github.io/

POJ 3252 Round Numbers(数位dp,区间中二进制表示时0的个数大于等于1的个数的数字的个数)

题目链接:
POJ 3252 Round Numbers
题意:
给一个区间[a,b]求区间中二进制表示时0的个数大于等于1的个数的数字的个数。
数据范围:ab2109
分析:
数位dp。
做区间减法后,将区间上限表示成二进制形式,dfs处理。记录下当前已有0和1的个数即可。注意剪枝。

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long ll;

int digit[35];
ll dp[35][35][35][2];

ll dfs(int pos, int zero, int one, int first, int limit)
{
    if (pos == -1) return zero >= one;
    if (pos + 1 + zero < one) return 0;
    if (!limit && dp[pos][zero][one][first] != -1) return dp[pos][zero][one][first];
    int last = limit ? digit[pos] : 1;
    ll ret = 0;
    for (int i = 0; i <= last; ++i) {
        if (i == 0) {
            int next_zero = zero + 1;
            if (first) next_zero = 0;
            ret += dfs(pos - 1, next_zero, one, first, limit && (i == last));
        } else ret += dfs(pos - 1, zero, one + 1, 0, limit && (i == last));
    }
    if (!limit) dp[pos][zero][one][first] = ret;
    return ret;
}

ll solve(ll x)
{
    memset(dp, -1, sizeof(dp));
    memset(digit, 0, sizeof(digit));
    int len = 0;
    while (x) {
        digit[len++] = x % 2;
        x /= 2;
    }
    return dfs(len - 1, 0, 0, 1, 1);
}

int main()
{
    ll L, R;
    while (~scanf("%lld%lld", &L, &R)) {
        printf("%lld\n", solve(R) - solve(L - 1));
    }
    return 0;
}
阅读更多
版权声明:缥缈玉京人,想语然、京兆眉妩。 https://blog.csdn.net/Ramay7/article/details/52374634
文章标签: POJ 数位dp
个人分类: POJ 数位dp
上一篇BZOJ 1799 self 同类分布(数位dp,区间各位数字和能整除原数的数字个数)
下一篇2014 GCJ Round 1B New Lottery Game(数位dp,x小于等于A,y小于等于B,并且x&amp;y值小于等于K的数字个数)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭