飞行实时仿真系统及技术(三)-上

本文详细介绍了飞行实时仿真系统的数学模型建立,包括基本概念、模型组成、模块化和层次化建模方法。此外,还探讨了坐标轴系、角度定义以及主要参数对照关系,为飞行仿真提供关键理论基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

三、飞行仿真建模与数据库

3.1 概述

3.2 数学模型

3.2.1 基本概念

3.2.2  飞行仿真模型的组成

3.2.3 模块化、层次化建模方法

3.3 坐标轴系和符号

3.3.1 坐标轴系

3.3.2 角度

3.3.3 主要参数对照关系


三、飞行仿真建模与数据库

3.1 概述

        数学模型的建立是以飞行实时仿真系统为基础,也是仿真系统逼真程度的关键所在。为此,要花较多的精力去研究和建立飞行仿真模型。建模的原则首先要符合客观事物的规律,数学模型要能正确反映和描述客观事物。根据仿真的目的和内容,模型的描述可选择恰当的复杂程度。总之,仿真模型要尽可能地复现真实对象。

        本章首先介绍数学模型的基本概念;仿真模型的组成;模块化、层次化建模方法;建模所用的坐标系和符号。然后阐述数据预处理、函数生成以及仿真数据库技术。

3.2 数学模型

3.2.1 基本概念

        “数学模型”就是根据物理概念、变化规律、测试结果和经验总结,用数学表达式、逻辑表达式、特性曲线、试验数据等来描述某一系统的表现形式。

        仿真空间和“模型”定义如下图所示。

        建模从“实际”开始,通过对仿真实体的分析,借助于方程或其它基本关系得出概念模型。其中,首先建立物理模型,选择合适的算法,再建立相应的仿真模型。采用某种程序语言把概念模型通过编程变成计算机模型(软件)。在计算机上运行计算机模型,进行一系列的数学仿真,将仿真结果与实际比较,按性能规范标准验证计算机模型是否具有满意的精度,是否符合预计的应用要求,同时也对概念模型和计算机模型进行了校核和验证。

3.2.2  飞行仿真模型的组成

        飞行实时仿真系统数学模型由以下部分组成,并具有一定的特点。

        1、飞行动力学模型,采用六自由度非线性全量运动方程,气动弹性的影响可以采用在运动方程中增加弹性自由度,也可以用“修正系数"法在气动系数中计入。该模型具有高阶多变量非线性时变特性。

        2、飞机系统仿真模型,包括发动机系统、操纵系统、导航系统,自动飞行系统、仪表系统。液压系统、燃油系统、电源系统等。这类模型具有各种逻辑控制,并直接与各种开关和显示器连接。

        3、环境仿真模型,如运动系统、视景系统、音响系统和操纵负荷系统等。环境仿真模型建模时必须考虑与人体生理特性相适应,考虑人体感觉的最低门限和分辨率及对不同信号的敏感程度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值