【HW4】

一、Unsupervised Learning

Sharing Parameters

	你可能会觉得通过当前词汇预测下一个词汇这个约束太弱了,由于不同词汇的搭配千千万万,即便是人也无法准确地给出下一个词汇具体是什么,你可以扩展这个问题,使用10个及以上的词汇去预测下一个词汇,可以帮助得到较好的结果,这里用2个词汇举例,如果是一般是神经网络,我们直接把wi-2和wi-1这两个vector拼接成一个更长的vector作为input即可。但实际上,我们希望和wi-2相连的weight与和wi-1相连的weight是tight在一起的,简单来说就是与的相同dimension对应到第一层hidden layer相同neuron之间的连线拥有相同的weight,在下图中,用同样的颜色标注相同的weight:

在这里插入图片描述
如果我们不这么做,那把同一个word放在wi-2的位置和放在wi-1的位置,得到的Embedding结果是会不一样的。把两组weight设置成相同,可以使wi-2与wi-1的相对位置不会对结果产生影响。除此之外,这么做还可以通过共享参数的方式有效地减少参数量,不会由于input的word数量增加而导致参数量剧增。

Formulation

	假设wi-2的1-of-N编码为xi-2,wi-1的1-of-N编码为xi-1,维数均为|V|,表示数据中的words总数。hidden layer的input为向量z,长度为|Z|,表示降维后的维数, z = W1xi-2 + W2xi-1。其中W1和W2都是|Z|*|V|维的weight matrix,它由|Z|组|V|维的向量构成,第一组|V|维向量与|V|维的xi-2相乘得到z1,第二组|V|维向量与|V|维的xi-2相乘得到z2,...,依次类推。我们强迫让W1=W2=W,此时z=W(xi-2 + xi-1)。因此,只要我们得到了这组参数W,就可以与1-of-N编码x相乘得到word embedding的结果。

在这里插入图片描述

In Practice

那在实际操作上,我们如何保证W1和W2一样呢?

以下图中的wi和wj为例,我们希望它们的weight是一样的:

首先在训练的时候就要给它们一样的初始值。,然后分别计算loss function 对和的偏微分,并对其进行更新。

在这里插入图片描述
这个时候你就会发现,C对wi和wj的偏微分是不一样的,这意味着即使给了wi和wj相同的初始值,更新过一次之后它们的值也会变得不一样,因此我们必须保证两者的更新过程是一致的,即:
在这里插入图片描述
这个时候,我们就保证了wi和wj始终相等:wi和wj的初始值相同,wi和wj的更新过程相同。
在这里插入图片描述
如何去训练这个神经网络呢?注意到这个NN完全是unsupervised,你只需要上网爬一下文章数据直接喂给它即可。比如喂给NN的input是“潮水”和“退了”,希望它的output是“就”,之前提到这个NN的输出是一个由概率组成的vector,而目标“就”是只有某一维为1的1-of-N编码,我们希望minimize它们之间的cross entropy,也就是使得输出的那个vector在“就”所对应的那一维上概率最高。

Various Architectures

除了上面的基本形态,Prediction-based方法还可以有多种变形。
(1)CBOW(Continuous bag of word model)拿前后的词汇去预测中间的词汇
(2)Skip-gram拿中间的词汇去预测前后的词
在这里插入图片描述

Application

机器问答
从得到的word vector里,我们可以发现一些原本并不知道的word与word之间的关系。把word vector两两相减,再投影到下图中的二维平面上,如果某两个word之间有类似包含于的相同关系,它们就会被投影到同一块区域。
在这里插入图片描述

机器翻译

	此外,word vector还可以建立起不同语言之间的联系。如果你要用上述方法分别训练一个英文的语料库(corpus)和中文的语料库,你会发现两者的word vector之间是没有任何关系的,因为Word Embedding只体现了上下文的关系,如果你的文章没有把中英文混合在一起使用,机器就没有办法判断中英文词汇之间的关系。但是,如果你知道某些中文词汇和英文词汇的对应关系,你可以先分别获取它们的word vector,然后再去训练一个模型,把具有相同含义的中英文词汇投影到新空间上的同一个点。接下来遇到未知的新词汇,无论是中文还是英文,你都可以采用同样的方式将其投影到新空间,就可以自动做到类似翻译的效果。

总结

	本节学习了Word Embedding(词嵌入)的知识,其基本思路就是:通过上下文找到这个词的意义,它是无监督学习的(输入一个词,输出一个向量),其基本思路有 Count based(基于统计) 与 Prediction based(基于预测)两种方法。基于统计的主要思想是:两词向量共同出现的频率比较高的话,那么这两个词向量也应该比较相似。而基于预测的方法是,我们要训练一个神经网络,它要做的就是根据当前的word wi-1 ,来预测下一个可能出现的word  wi是什么。

二、HW4

1、Task

做语者辨识任务,一共有600个语者,给了每一个语者的语音feature进行训练,然后通过test_feature进行语者辨识。(本质上还是分类任务Classification)
Simple(0.60824):run sample code and know how to use transformer
Medium(0.70375):know how to adjust parameters of transformer
Strong(0.77750):construct conformer
Boss(0.86500):implement self-attention pooling and additive margin softmax

2、数据集分析

mapping.json文件

在这里插入图片描述
将speakers的id映射到编号0~599,因为一共有600个不同的speaker需要对语音进行分类

metadata.json文件

在这里插入图片描述
存放的是training data,本次实验没有专门设置validation data,需要从training data中划分validation data
n_mels:在对语音数据进行处理时,从每一个时间维度上选取n_mels个维度来表示这个feature
speakers:以key-value形式存放speakers的id和所有feature(每个speaker都有多个feature)
feature_path:这个feature的文件名
mel_len:每一个feature的长度(每一个可能都不一样,后期需要处理)

testdata.json文件

在这里插入图片描述
与metadata形式类似,需要我们进行语者辨识。utterance:话语; 言论

3、Dataset

本次实验的数据来源于 Voxceleb2语音数据集,是真实世界中语者的语音,作业中选取了600个语者,和他们的语音进行训练。

import os
import json
import torch
import random
from pathlib import Path
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
 
 
class myDataset(Dataset):
	def __init__(self, data_dir, segment_len=128):
		self.data_dir = data_dir
		self.segment_len = segment_len
	
		#加载从speaker neme到其相应id的映射。
		mapping_path = Path(data_dir) / "mapping.json"  #mapping_path: Dataset\mapping.json
		mapping = json.load(mapping_path.open()) 
		#mapping: {'speaker2id': {'id00464': 0, 'id00559': 1,
		self.speaker2id = mapping["speaker2id"] 
		#self.speaker2id: {'id00464': 0, 'id00559': 1, 'id00578': 2, 'id00905': 3,...
	
		#加载训练数据的元数据metadata 
		metadata_path = Path(data_dir) / "metadata.json"        
		metadata = json.load(open(metadata_path))["speakers"] #metadata中存放的key是speaker_id,value是每个speaker的feature和对应长度
	
		# 获取speaker的总数。
		self.speaker_num = len(metadata.keys())
		self.data = []
		for speaker in metadata.keys():  #遍历每一个spearker_id
			for utterances in metadata[speaker]: #通过speaker_id取出speaker的所有feature和len
			"""
                utterances格式:
                {'feature_path': 'uttr-18e375195dc146fd8d14b8a322c29b90.pt', 'mel_len': 435}
               {'feature_path': 'uttr-da9917d5853049178487c065c9e8b718.pt', 'mel_len': 490}...
       """
				self.data.append([utterances["feature_path"], self.speaker2id[speaker]])
        #self.data:[['uttr-18e375195dc146fd8d14b8a322c29b90.pt', 436], 
        #           ['uttr-da9917d5853049178487c065c9e8b718.pt', 436],...
        #一共600个speaker,436表示第436个speaker
 
	def __len__(self):
			return len(self.data)
 
	def __getitem__(self, index):
		feat_path, speaker = self.data[index] #feature和speaker编号[0,599]
		# 加载预处理后的mel-spectrogram.。
		mel = torch.load(os.path.join(self.data_dir, feat_path)) #加载feature
		#mel.size():torch.Size([490, 40])

		# 将mel-spectrogram分割成“segment_len”帧。
		if len(mel) > self.segment_len: #将feature切片成固定长度
			#随机获取线段的起点。
			start = random.randint(0, len(mel) - self.segment_len)  #随机选取切片起始点
			#获得一个具有“segment_len”帧的分段。
			mel = torch.FloatTensor(mel[start:start+self.segment_len])#截取长度为segment_len的片段 mel.size():torch.Size([128, 40])
		else:
			mel = torch.FloatTensor(mel) #为什么小于segment_len不填充?  填充在dataloader中完成
		#将说话者id转换为long,以便稍后计算损耗。
		speaker = torch.FloatTensor([speaker]).long() #将speaker的编号转为long类型
		return mel, speaker
 
	def get_speaker_number(self):
		return self.speaker_num  #600


4、Dataloader

主要任务:1.划分验证集 2.将长度小于segment_len的mel进行padding 3.生成dataloader

import torch
from torch.utils.data import DataLoader, random_split
from torch.nn.utils.rnn import pad_sequence


def collate_batch(batch):  #用于整理数据的函数,参数为dataloader中的一个batch
	#每个批次内的流程特征。
	"""核对一batch数据。"""
	mel, speaker = zip(*batch)  #zip拆包,将一个batch中的mel和speaker分开,各自单独形成一个数组
	# 因为我们是一批一批地训练模型,所以需要在同一个批次中填充特征,使它们的长度相同。
    #mel中元素长度不相同时,将所有的mel元素填充到最长的元素的长度,填充的值由padding_value决定
	mel = pad_sequence(mel, batch_first=True, padding_value=-20)    # pad log 10^(-20) 这是非常小的值。
	# mel: (batch size, length, 40)
	return mel, torch.FloatTensor(speaker).long()


def get_dataloader(data_dir, batch_size, n_workers):
	"""产生 dataloader"""
	dataset = myDataset(data_dir)
	speaker_num = dataset.get_speaker_number()
	# 将数据集分为训练数据集和验证数据集
	trainlen = int(0.9 * len(dataset))
	lengths = [trainlen, len(dataset) - trainlen] 
	trainset, validset = random_split(dataset, lengths) #无覆盖的随机划分训练集和验证集

	train_loader = DataLoader(
		trainset,
		batch_size=batch_size,
		shuffle=True,
		drop_last=True,
		num_workers=n_workers,
		pin_memory=True,
		collate_fn=collate_batch,
	)
	valid_loader = DataLoader(
		validset,
		batch_size=batch_size,
		num_workers=n_workers,
		drop_last=True,
		pin_memory=True,
		collate_fn=collate_batch,
	)

	return train_loader, valid_loader, speaker_num

5、Model

import torch
import torch.nn as nn
import torch.nn.functional as F


class Classifier(nn.Module):
	def __init__(self, d_model=160, n_spks=600, dropout=0.1):
		super().__init__()
		# 将特征尺寸从输入尺寸投影到d_model中。
		self.prenet = nn.Linear(40, d_model)
        
        #对于文本分类等下游任务,只需要用到Encoder部分即可
        #nhead:multi_head_attention中head个数
        #d_model:输入的feature的个数
        #dim_feedforward:feedforward network的维度
        #dropout默认0.1
		self.encoder_layer = nn.TransformerEncoderLayer(
			d_model=d_model, dim_feedforward=256, nhead=8
		)
		# self.encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=2)

		# 将特征的维度从d_model映射到speaker nums。
		self.pred_layer = nn.Sequential(
			nn.Linear(d_model, d_model),
			nn.ReLU(),
			nn.Linear(d_model, n_spks),
		)

	def forward(self, mels):
		"""
		args:
			mels: (batch size, length, 40)
		return:
			out: (batch size, n_spks)
		"""
		# out: (batch size, length, d_model)   length=segment_len
		out = self.prenet(mels)
		# out: (length, batch size, d_model)
		out = out.permute(1, 0, 2) #交换dim=0和dim=1
		#编码器层期望 (length, batch size, d_model)形式的特征。
		out = self.encoder_layer(out)
		# out: (batch size, length, d_model)
		out = out.transpose(0, 1)  #转置dim=0和dim=1
		# mean pooling
		stats = out.mean(dim=1) #可以理解为求平均并去除维度1  stats.size():(batch_size,d_model)

		# out: (batch, n_spks)
		out = self.pred_layer(stats)
		return out

6、Learning rate schedule

当batch设置的比较大的时候通常需要比较大的学习率(通常batch_size和学习率成正比),但在刚开始训练时,参数是随机初始化的,梯度也比较大,这时学习率也比较大,会使得训练不稳定。
warm up 方法就是在最初几轮迭代采用比较小的学习率,等梯度下降到一定程度再恢复初始学习率。


import math
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR


def get_cosine_schedule_with_warmup(
	optimizer: Optimizer,
	num_warmup_steps: int,
	num_training_steps: int,
	num_cycles: float = 0.5,
	last_epoch: int = -1,
):
	"""
	创建一个学习率随余弦函数值下降的时间表
优化器中的初始lr设置为0,在预热期间,lr在0和之间线性增加.
 优化器中的初始lr集。

	参数:
optimizer(:class:` ~ torch . optim . optimizer `):为其调度学习率的优化程序。
num_warmup_steps (:obj:`int `):预热阶段的步骤数。
num_training_steps (:obj:`int `):训练步骤的总数。
num_cycles (:obj:`float ',` optional ',默认为0.5):余弦计划中的波数(默认值是从最大值减少到0跟随半余弦)。
last_epoch (:obj:`int ',` optional ',默认为-1):恢复训练时最后一个时期的索引。
返回:obj:`torch.optim.lr_scheduler。适当的时间表。
	
	"""
	def lr_lambda(current_step):
		# Warmup
		if current_step < num_warmup_steps:
			return float(current_step) / float(max(1, num_warmup_steps))
		# decadence
		progress = float(current_step - num_warmup_steps) / float(
			max(1, num_training_steps - num_warmup_steps)
		)
		return max(
			0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
		)

	return LambdaLR(optimizer, lr_lambda, last_epoch)

pytorch提供了两类函数用于学习率调整

torch.optim.lr_scheduler: 根据学习率更新次数调整学习率
torch.optim.lr_scheduler.ReduceLROnPlateau:根据验证集的评价指标调整学习率

LambdaLR

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)

# 设置学习率为初始学习率乘以给定lr_lambda函数的值.
new_lr=lr_lambda(last_epoch) * base_lr
#当 last_epoch=-1时, base_lr为optimizer优化器中的lr每次执行 scheduler.step(),  last_epoch=last_epoch +1

optimizer:优化器
lr_lambda:函数或者函数列表
last_epoch:默认为-1,学习率更新次数计数;注意断点训练时last_epoch不为-1
常用的Warmup预热学习率也可以依靠LambdaLR实现


def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
    """
   Warmup预热学习率:先从一个较小的学习率线性增加至原来设置的学习率,再进行学习率的线性衰减
   
    当 current_step < num_warmup_steps时,
    new_lr =current_step/num_warmup_steps * base_lr
    当current_step >= num_warmup_steps时,
    new_lr =(num_training_steps - current_step) / (num_training_steps -num_warmup_steps) * base_lr

    Args:
        optimizer (:class:`~torch.optim.Optimizer`):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (:obj:`int`):
            The number of steps for the warmup phase.
        num_training_steps (:obj:`int`):
            The total number of training steps.
        last_epoch (:obj:`int`, `optional`, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        :obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    def lr_lambda(current_step: int):
         # 自定义函数
        if current_step < num_warmup_steps:
            return float(current_step) / float(max(1, num_warmup_steps))
        return max(
            0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
        )

    return LambdaLR(optimizer, lr_lambda, last_epoch)

7、Model Function

调用自定义model的forward部分,每遍历一个batch都要调用一次model_fn

import torch


def model_fn(batch, model, criterion, device):
	"""Forward a batch through the model."""

	mels, labels = batch
  
	#print("model_fn_mels.size():",mels.size())  
    # out:torch.Size([16, 128, 40]) [batch_size,segment_len,40]
	mels = mels.to(device)
	labels = labels.to(device)

	outs = model(mels)

	loss = criterion(outs, labels)

	# 获取概率最高的说话者id。
	preds = outs.argmax(1)
	# 计算准确度。
	accuracy = torch.mean((preds == labels).float())

	return loss, accuracy

8、Validate

计算验证集上的准确率

from tqdm import tqdm
import torch


def valid(dataloader, model, criterion, device): 
	"""在验证集上验证。"""

	model.eval()
	running_loss = 0.0
	running_accuracy = 0.0
	#验证集5667个
	pbar = tqdm(total=len(dataloader.dataset), ncols=0, desc="Valid", unit=" uttr")

	for i, batch in enumerate(dataloader):
		with torch.no_grad():
			loss, accuracy = model_fn(batch, model, criterion, device)
			running_loss += loss.item()
			running_accuracy += accuracy.item()

		pbar.update(dataloader.batch_size)
		pbar.set_postfix(
			loss=f"{running_loss / (i+1):.2f}",
			accuracy=f"{running_accuracy / (i+1):.2f}",
		)

	pbar.close()
	model.train()

	return running_accuracy / len(dataloader)

9、Main function

开始跑模型,这里与之前的作业有不同的地方。前几个作业是跑完一个epoch也就是完整训练集,再开始跑验证集。这里是跑valid_steps个batch,跑一遍验证集。

from tqdm import tqdm

import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import DataLoader, random_split


def parse_args():
	"""arguments"""
	config = {
		"data_dir": "./Dataset",
		"save_path": "model.ckpt",
		"batch_size": 16,
		"n_workers": 0,
		"valid_steps": 2000,
		"warmup_steps": 1000,
		"save_steps": 10000,
		"total_steps":100000,
	}

	return config


def main(
	data_dir,
	save_path,
	batch_size,
	n_workers,
	valid_steps,
	warmup_steps,
	total_steps,
	save_steps,
):
	"""Main function."""
	device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
	print(f"[Info]: Use {device} now!")

	train_loader, valid_loader, speaker_num = get_dataloader(data_dir, batch_size, n_workers)
	train_iterator = iter(train_loader) #iter()生成迭代器,以batch为单位
	#print("train_iterator:",train_iterator) #<torch.utils.data.dataloader._SingleProcessDataLoaderIter object at 0x000001FD07C558D0>
	print(f"[Info]: Finish loading data!",flush = True)

	model = Classifier(n_spks=speaker_num).to(device)
	criterion = nn.CrossEntropyLoss()
	optimizer = AdamW(model.parameters(), lr=1e-3)
	scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps, total_steps) #上面定义的warm up函数
	print(f"[Info]: Finish creating model!",flush = True)

	best_accuracy = -1.0
	best_state_dict = None

	pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step") 
	#train valid_steps个batch再跑验证集

	for step in range(total_steps): #一共运行total_Steps轮,这里没有epoch的概念
		# Get data
		try:
			batch = next(train_iterator) #next()返回迭代器的下一个项目,即下一个batch
			#print("batch[0].size():",batch[0].size())    
			#out:torch.Size([16, 128, 40]) [batch_size,segment_len,40]       
		except StopIteration:  # 不指定 default 且迭代器元素耗尽, 将引发 StopIteration 异常
			train_iterator = iter(train_loader)
			batch = next(train_iterator)

		loss, accuracy = model_fn(batch, model, criterion, device) #计算当前batch的loss和acc
		#print("loss:",loss) #tensor(6.3915, device='cuda:0', grad_fn=<NllLossBackward0>)            
		batch_loss = loss.item() # loss是张量,item()可以取出张量中的值
		#print("batch_loss:",batch_loss) #batch_loss: 6.391468048095703
		batch_accuracy = accuracy.item()

		# Updata model 反向传播更新参数,每跑一个batch都会更新
		loss.backward()
		optimizer.step()
		scheduler.step()
		optimizer.zero_grad()

		# Log
		pbar.update() #打印当前loss和acc
		pbar.set_postfix(
			loss=f"{batch_loss:.2f}",
			accuracy=f"{batch_accuracy:.2f}",
			step=step + 1,
		)

		# Do validation
		if (step + 1) % valid_steps == 0: #经过valid_steps开始跑验证集
			pbar.close()

			valid_accuracy = valid(valid_loader, model, criterion, device) #计算valid_acc

			# keep the best model
			if valid_accuracy > best_accuracy:
				best_accuracy = valid_accuracy
				best_state_dict = model.state_dict() #保存模型参数

			pbar = tqdm(total=valid_steps, ncols=0, desc="Train", unit=" step")

		# Save the best model so far.
		if (step + 1) % save_steps == 0 and best_state_dict is not None: #每save_steps轮会保存一次当前最好模型
			torch.save(best_state_dict, save_path)
			pbar.write(f"Step {step + 1}, best model saved. (accuracy={best_accuracy:.4f})")

	pbar.close()


if __name__ == "__main__":
	main(**parse_args())
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值