opencv-python实现图片背景去除、阴影去除使图像清晰

这篇博客介绍了两种Python方法,分别用于去除文字图片的黑色背景和文字上的阴影。第一部分通过`opencv`库使用自适应阈值和形态学操作实现背景去除,第二部分通过计算灰白色像素均值来消除文字阴影。提供的代码示例展示了具体实现过程,并展示了处理前后的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:RayChiu_Labloy
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处


功能背景:手机拍照文字信息,出现黑色背景影响观看

去除背景实验图片:

 去除背景代码:

#!/usr/bin/python3.7
# -*- coding: utf-8 -*-
# @Time : 2021/8/17 12:06
# @Author : raychiu
# @Email : raychiu0202@163.com
# @File : 去背景.py
# @Software: PyCharm

import cv2 as cv

image = cv.imread("1.jpg",cv.IMREAD_GRAYSCALE)
binary = cv.adaptiveThreshold(image,255,
        cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY_INV,25,15)
se = cv.getStructuringElement(cv.MORPH_RECT,(1,1))
se = cv.morphologyEx(se, cv.MORPH_CLOSE, (2,2))
mask = cv.dilate(binary,se)
# cv.imshow("image",image)


# mask = cv.inRange(hsv, lower_green, upper_green)
mask_inv = cv.bitwise_not(mask)

bg = cv.bitwise_and(image, mask)
fg = cv.bitwise_and(image, mask_inv)
cv.imshow('bg', bg)
cv.imshow('fg', fg)
result = cv.add(bg,mask_inv)
cv.imshow("reslut",result)
# mask1 = cv.bitwise_not(mask)
# binary =cv.bitwise_and(image,mask)
# result = cv.add(binary,mask1)
# cv.imshow("reslut",result)
# cv.imwrite("reslut00.jpg",result)
cv.waitKey(0)
cv.destroyAllWindows()

效果:

需求二:去除文字照片上的阴影:

实验图片

 实验代码:

import cv2
import numpy as np
img = cv2.imread('1.jpg', 0)
# 计算灰白色部分像素的均值
pixel = int(np.mean(img[img > 140]))
# 把灰白色部分修改为与背景接近的颜色
img[img > 90] = pixel
cv2.imwrite('res.jpg', img)

实现效果

【如果对您有帮助,交个朋友给个一键三连吧,您的肯定是我博客高质量维护的动力!!!】

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值