作者:RayChiu_Labloy
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处
功能背景:手机拍照文字信息,出现黑色背景影响观看
去除背景实验图片:
去除背景代码:
#!/usr/bin/python3.7
# -*- coding: utf-8 -*-
# @Time : 2021/8/17 12:06
# @Author : raychiu
# @Email : raychiu0202@163.com
# @File : 去背景.py
# @Software: PyCharm
import cv2 as cv
image = cv.imread("1.jpg",cv.IMREAD_GRAYSCALE)
binary = cv.adaptiveThreshold(image,255,
cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY_INV,25,15)
se = cv.getStructuringElement(cv.MORPH_RECT,(1,1))
se = cv.morphologyEx(se, cv.MORPH_CLOSE, (2,2))
mask = cv.dilate(binary,se)
# cv.imshow("image",image)
# mask = cv.inRange(hsv, lower_green, upper_green)
mask_inv = cv.bitwise_not(mask)
bg = cv.bitwise_and(image, mask)
fg = cv.bitwise_and(image, mask_inv)
cv.imshow('bg', bg)
cv.imshow('fg', fg)
result = cv.add(bg,mask_inv)
cv.imshow("reslut",result)
# mask1 = cv.bitwise_not(mask)
# binary =cv.bitwise_and(image,mask)
# result = cv.add(binary,mask1)
# cv.imshow("reslut",result)
# cv.imwrite("reslut00.jpg",result)
cv.waitKey(0)
cv.destroyAllWindows()
效果:
需求二:去除文字照片上的阴影:
实验图片
实验代码:
import cv2
import numpy as np
img = cv2.imread('1.jpg', 0)
# 计算灰白色部分像素的均值
pixel = int(np.mean(img[img > 140]))
# 把灰白色部分修改为与背景接近的颜色
img[img > 90] = pixel
cv2.imwrite('res.jpg', img)
实现效果
【如果对您有帮助,交个朋友给个一键三连吧,您的肯定是我博客高质量维护的动力!!!】