【学习笔记】3Blue1Brown 线性代数导引

什么是向量?

合理定义加法和数乘、符合公设的“东西”就是向量;
向量空间对加法及数乘这两种基本运算保持封闭。

如果给向量空间添加点积(长度和角度、欧式距离和余弦距离)的定义,就构成了欧几里得空间。

例如说,

  • 颜色可以是“向量”,三原色是“基底”
    在这里插入图片描述

  • 多项式函数是“向量”, x 2 + 5 = [ 5 0 1 0 ⋯ ] x^2+5=\begin{bmatrix} 5\\ 0\\ 1\\ 0\\ \cdots \end{bmatrix} x2+5= 5010

  • 信号是“向量”,可以合成和分解;

向量 v ⃗ = [ 1 2 ] ∈ R 2 \vec{v} = \begin{bmatrix} 1\\ 2 \end{bmatrix} \in \mathcal{R}^2 v =[12]R2是二维坐标系标准正交基底向量的缩放和(线性组合): 1 i ^ + 2 j ^ 1\hat{i} + 2 \hat{j} 1i^+2j^的简记;如果基底变换用矩阵的形式表示, I = [ 1 0 0 1 ] I=\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} I=[1001] x = [ 1 2 ] x=\begin{bmatrix} 1\\ 2 \end{bmatrix} x=[12],这里 I I I是“恒等变换”: I x = x Ix=x Ix=x

什么是线性系统(多元一次联立方程组、矩阵)?

系统,也被称作映射、函数、变换、算子,输入一个“东西”,输出一个“东西”,是一个“集合”到另一个“集合”的映射关系;

其中,满足叠加性 f ( x ⃗ + y ⃗ ) = f ( x ⃗ ) + f ( y ⃗ ) f(\vec {x} + \vec {y}) = f(\vec{x}) + f(\vec{y}) f(x +y )=f(x )+f(y ))和比例性 f ( k x ⃗ ) = k f ( x ⃗ ) f(k\vec {x}) = kf(\vec{x}) f(kx )=kf(x ))的是“线性系统”。

  • 线性方程组是“线性系统”,以矩阵的形式简记系数时,我们更关注列向量的缩放和(线性组合),而不是将每行视作一个直线(超平面)约束,关注它们的交点;
  • 向量 x x x是“输入”,矩阵 A A A是“线性系统”,向量 b b b是“输出”,如果从函数的语言说,解线性方程组就是求逆映射/反函数,可以从“值域”、“到达域”、“单射”,“满射”,理解方程组的“有解”、“唯一解”、“均有解”;;
  • 转置是“线性系统”,前缀和、差分是“线性系统”,微分、积分也是“线性系统”,旋转、投影是“线性系统”:符合叠加性和比例性。

在二维视角下说,考虑线性系统操纵的是基底(空间),要满足输入直线,输出直线,输入零,输出零,网格线保持平行且“均匀”等距分布(旋转、投影也是线性变换,可以写作矩阵乘法的形式)。

矩阵运算和相关概念

  • 矩阵乘法:多个变换相继作用,例如 M 2 ( M 1 x ) = ( M 2 M 1 ) x M_2(M_1 x) = (M_2 M_1) x M2(M1x)=(M2M1)x,矩阵乘法最初是用于表示线性方程组的解法(左乘是行视角行变换,右乘是列视角列变换);

  • 行列式:系统对空间的挤压(拉伸)作用的度量,表现为方向(正、负)和大小(面积、体积之比);如果行列式为零,说明该变换对空间进行了塌陷变换,减小了维度,该变换是不可逆的,变换后的维度被称为“秩”,对应着矩阵“列向量”张成空间的维度(去除摆烂向量得到最大无关组,构成了该张成空间的一组基)

  • 对于某些特定的向量而言,应用线性变换 A A A,并没有离开它自身(缩放)张成的直线, A A A相当于一个“标量” λ \lambda λ(或者说 λ I \lambda I λI),这些向量就被称为“特征向量”,这个“标量”度量了缩放方向与大小,被称为“特征值”。尤其对于旋转变换而言,“特征向量”就是“旋转轴”。

例一:差分、前缀和、矩阵的逆

例如说, A x = [ 1 0 0 − 1 1 0 0 − 1 1 ] [ x 1 x 2 x 3 ] = [ x 1 x 2 − x 1 x 3 − x 2 ] = b Ax = \begin{bmatrix} 1 & 0 & 0\\ -1 & 1 & 0\\ 0 & -1 & 1\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3\\ \end{bmatrix} = \begin{bmatrix} x_1\\ x_2 - x_1\\ x_3 - x_2\\ \end{bmatrix}=b Ax= 110011001 x1x2x3 = x1x2x1x3x2 =b
考虑 A A A列向量的线性组合,它起到的变换作用是一阶差分。
如果输入 x = [ 1 4 9 ] x=\begin{bmatrix} 1 \\ 4 \\ 9 \end{bmatrix} x= 149 ,自然地,线性系统的输出是 b = [ 1 3 5 ] b=\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} b= 135

这是已知系统、输入,求得输出,我们称之为前向“传播”。
那么如果考虑求解线性方程组,即在已知“线性系统”和“输出”的前提下,
求得“输入”呢?对于当前的差分系统来讲,逆运算是前缀和,因此并不困难从输出到输入。
如果输出是 b = [ b 1 b 2 b 3 ] b=\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} b= b1b2b3 ,那么很自然的,输入应该是 x = [ b 1 b 1 + b 2 b 1 + b 2 + b 3 ] x=\begin{bmatrix} b_1 \\ b_1+b_2 \\ b_1 + b_2 + b_3 \end{bmatrix} x= b1b1+b2b1+b2+b3
我们关注原点(零点),假如说输出的 b = 0 ⃗ b=\vec{0} b=0 ,那么输入的 x x x是唯一的。
同时,我们还可以写出这一线性变换的逆变换 A − 1 = [ 1 0 0 1 1 0 1 1 1 ] A^{-1} = \begin{bmatrix} 1 & 0 & 0\\ 1 & 1 & 0\\ 1 & 1 & 1\\ \end{bmatrix} A1= 111011001 ,使得 A − 1 b = x A^{-1}b=x A1b=x


如果是这样的呢? C x = [ 1 0 − 1 − 1 1 0 0 − 1 1 ] [ x 1 x 2 x 3 ] = [ x 1 − x 3 x 2 − x 1 x 3 − x 2 ] = [ b 1 b 2 b 3 ] Cx = \begin{bmatrix} 1 & 0 & -1\\ -1 & 1 & 0\\ 0 & -1 & 1\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3\\ \end{bmatrix} = \begin{bmatrix} x_1 - x_3\\ x_2 - x_1\\ x_3 - x_2\\ \end{bmatrix}=\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} Cx= 110011101 x1x2x3 = x1x3x2x1x3x2 = b1b2b3

第一个发现是,我们将 [ x 1 − x 3 x 2 − x 1 x 3 − x 2 ] \begin{bmatrix} x_1 - x_3\\ x_2 - x_1\\ x_3 - x_2\\ \end{bmatrix} x1x3x2x1x3x2 所有项相加为零,可是 [ b 1 b 2 b 3 ] \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} b1b2b3 所有项相加却不恒为零。
这意味着, C C C的列向量张成空间(所有线性组合构成的向量空间)不是一个“点”(零维),不是一条“直线”(一维),
而是一个“平面”(二维), x + y + z = 0 x+y+z=0 x+y+z=0

第二个发现是,只要输入 x = c [ 1 1 1 ] x=c\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} x=c 111 都满足输出的 b = 0 ⃗ b=\vec{0} b=0
这说明有许多本身并不在原点的点(向量)经历该线性变换后,空间发生了塌陷,被挤压至零点(验证一下, det ⁡ ( C ) = 0 \det(C) = 0 det(C)=0,意味着基底体积变为0)。因此,并不存在这样的 C − 1 C^{-1} C1 C C C是不可逆的),能够将有损压缩的文件恢复原状。反证法:我们假设存在, C x = b Cx=b Cx=b,现存在 x ≠ 0 ⃗ x\ne \vec{0} x=0 b = 0 ⃗ b=\vec{0} b=0 ,那么:
C − 1 C x = C − 1 b C^{-1}Cx=C^{-1}b C1Cx=C1b,与假设相互矛盾。

只有双射函数 A ( x ) A(x) A(x)(对应满秩矩阵),才有反函数 A − 1 ( x ) A^{-1}(x) A1(x)

例二:旋转矩阵与倍半角公式

「旋转」满足叠加、数乘,因而是一个线性变换。
我们可以用矩阵的形式进行描述,倘若我们要将向量 x x x逆时针旋转 θ \theta θ角,如何写这个矩阵呢?从基变换的视角看,这意味着我们要将坐标系 i ^ , j ^ \hat{i}, \hat{j} i^,j^同样逆时针旋转 θ \theta θ角。

在这里插入图片描述

然后将新基底 i ^ ′ , j ^ ′ \hat{i}^\prime, \hat{j}^\prime i^,j^作为矩阵的列,就得到了旋转矩阵:

A = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] A=\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin\theta & \cos\theta \end{bmatrix} A=[cosθsinθsinθcosθ]

我们能从旋转矩阵(系统、变换、函数、算子)获得什么有趣的发现呢?

考虑 A ( A x ) = ( A A ) x = A 2 x A(Ax) = (AA)x = A^2x A(Ax)=(AA)x=A2x A 2 A^2 A2意味着旋转两次(旋转两倍),即:

[ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] 2 = [ cos ⁡ 2 θ − sin ⁡ 2 θ sin ⁡ 2 θ cos ⁡ 2 θ ] \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin\theta & \cos\theta \end{bmatrix}^2 = \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix} [cosθsinθsinθcosθ]2=[cos2θsin2θsin2θcos2θ]

不妨把矩阵进行平方,进行观察:

[ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] = [ cos ⁡ 2 θ − sin ⁡ 2 θ − 2 cos ⁡ θ sin ⁡ θ 2 cos ⁡ θ sin ⁡ θ cos ⁡ 2 θ − sin ⁡ 2 θ ] \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos^2 \theta -\sin^2 \theta & -2 \cos \theta \sin \theta \\ 2 \cos \theta \sin \theta & \cos^2 \theta -\sin^2 \theta \end{bmatrix} [cosθsinθsinθcosθ][cosθsinθsinθcosθ]=[cos2θsin2θ2cosθsinθ2cosθsinθcos2θsin2θ]

于是,我们用矩阵乘法推导出了倍角公式。真是太酷了!

例三:椭圆面积公式

我们将单位圆通过 x = ( cos ⁡ θ sin ⁡ θ ) x=\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} x=(cosθsinθ)表示,对单位圆进行坐标变换 A = [ a 0 0 b ] A=\begin{bmatrix} a & 0\\ 0 & b \end{bmatrix} A=[a00b](分别将 x , y x,y x,y轴单位基底做 a , b a,b a,b拉伸),得到椭圆:
A x = ( a cos ⁡ θ b sin ⁡ θ ) Ax = \begin{pmatrix} a\cos \theta \\ b\sin \theta \end{pmatrix} Ax=(acosθbsinθ)

二阶行列式代表变换前后的有向面积之比,因此 S 椭圆 S 单位圆 = ∣ a 0 0 b ∣ \frac{S_{椭圆}}{S_{单位圆}} = \begin{vmatrix} a & 0\\ 0 & b \end{vmatrix} S单位圆S椭圆= a00b ,故:

S 椭圆 = π a b S_{椭圆} = \pi ab S椭圆=πab

参考

  1. MIT 18.06SC Fall 2011

  2. 李宏毅 Linear Algebra 2023 Fall

  3. 3b1b 线性代数的本质(汉语配音)

  4. 马同学图解数学

  5. 漫士沉思录·无痛线代

  6. 結城浩·數學女孩

  • 20
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值