- 博客(3)
- 收藏
- 关注
原创 论文阅读:深度强化学习下的弱监督时序数据异常检测
文章来源:Deep reinforcement learning for data-efficient weakly supervised business process anomaly detection在线时间序列(文中为商业流程日志事件数据)异常检测任务中,由于小样本和标记成本的问题,收集大量带标记的异常数据非常困难,监督学习的方法在此领域适用性极差。因此,基于完全标记的正常数据和无监督学习方法和半监督学习方法长期以来占主导地位。然而,由于缺乏对真实异常的先验知识,这些方法的效果也并不完全理想。
2024-10-11 15:55:53
1917
1
原创 GNG论文+实验
更新:2023/10/9上世纪 90 年代,人工神经网络研究人员得出了一个结论:有必要为那些缺少网络层固定拓扑特征的运算机制,开发一个新的类。也就是说,人工神经在特征空间内的数量和布置并不会事先指定,而是在学习此类模型的过程中、根据输入数据的特性来计算,独立调节也与其适应。我们注意到,CNN/RNN这种在训练开始前就预先设置好了网络的神经元拓朴结构而训练的过程只是在调整这些神经元的参数,对于无监督学习的场景来说,大多数情况下,我们是无法预先知道输入数据空间的拓朴分布的。
2023-10-09 18:50:06
1332
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人