GIS空间插值算法-自然邻域法

首先明确自然邻域法是建立在泰森多边形基础上的
给出计算公式:
G ( x ) = ∑ i = 1 n w i ( x ) f ( x i ) {\displaystyle G(x)=\sum _{i=1}^{n}{w_{i}(x)f(x_{i})}} G(x)=i=1nwi(x)f(xi)

G ( x ) {\displaystyle G(x)} G(x)即我们想得到的未知点 x {\displaystyle x} x的数据
w i {\displaystyle w_{i}} wi是未知点周围各个已知点数据所占的权重,它是根据下面公式求得的
w i ( x ) = A ( x i ) A ( x ) {\displaystyle w_{i}(\mathbf {x} )={\frac {A(\mathbf {x} _{i})}{A(\mathbf {x} )}}} wi(x)=A(x)A(xi)
其中 A(x) 是以 x 为中心的新单元(新建立的泰森多边形)的体积,A(xi) 是以 x 为中心的新单元与以 xi 为中心的旧单元(原本的泰森多边形)之间的交集的体积。

用下面这个图就很好理解了
在这里插入图片描述
自然邻域的本质还是加权求和的原理,它是泰森多边形的进一步发展,原本泰森多边形插值每个多边形内的数据数值是均一的,不能很好的反映呈连续分布的现象


主要参考:
维基百科:https://en.wikipedia.org/wiki/Natural_neighbor_interpolation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值