首先明确自然邻域法是建立在泰森多边形基础上的
给出计算公式:
G
(
x
)
=
∑
i
=
1
n
w
i
(
x
)
f
(
x
i
)
{\displaystyle G(x)=\sum _{i=1}^{n}{w_{i}(x)f(x_{i})}}
G(x)=i=1∑nwi(x)f(xi)
G
(
x
)
{\displaystyle G(x)}
G(x)即我们想得到的未知点
x
{\displaystyle x}
x的数据
w
i
{\displaystyle w_{i}}
wi是未知点周围各个已知点数据所占的权重,它是根据下面公式求得的
w
i
(
x
)
=
A
(
x
i
)
A
(
x
)
{\displaystyle w_{i}(\mathbf {x} )={\frac {A(\mathbf {x} _{i})}{A(\mathbf {x} )}}}
wi(x)=A(x)A(xi)
其中 A(x) 是以 x 为中心的新单元(新建立的泰森多边形)的体积,A(xi) 是以 x 为中心的新单元与以 xi 为中心的旧单元(原本的泰森多边形)之间的交集的体积。
用下面这个图就很好理解了
自然邻域的本质还是加权求和的原理,它是泰森多边形的进一步发展,原本泰森多边形插值每个多边形内的数据数值是均一的,不能很好的反映呈连续分布的现象
主要参考:
维基百科:https://en.wikipedia.org/wiki/Natural_neighbor_interpolation