Group Convolution(组卷积)

下面通过一个简单的示例,使用 PyTorch 来展示如何实现 Group Convolution(组卷积),以及它与普通卷积的区别。

1. 普通卷积(Convolution)

在普通卷积中,所有的输入通道都会参与计算。

import torch
import torch.nn as nn

# 假设我们有一个 4x4 的输入张量,通道数为 4
input_tensor = torch.randn(1, 4, 4, 4)  # (batch_size, channels, height, width)

# 使用普通卷积
conv = nn.Conv2d(in_channels=4, out_channels=8, kernel_size=3, padding=1)
output = conv(input_tensor)

print("普通卷积输出的形状:", output.shape)

2. 组卷积(Group Convolution)

在组卷积中,输入通道被划分成多个组,每组独立计算。我们可以通过 groups 参数来指定组的数量。

# 使用组卷积,将输入通道分成 2 组
group_conv = nn.Conv2d(in_channels=4, out_channels=8, kernel_size=3, padding=1, groups=2)
group_output = group_conv(input_tensor)

print("组卷积输出的形状:", group_output.shape)

解释:

  1. 普通卷积
    每个输出通道都与输入的所有通道进行卷积计算,因此 in_channelsout_channels 都是完整的。

  2. 组卷积
    groups=2 时,输入的 4 个通道会被划分成 2 组,每组有 2 个通道。卷积核也会对应划分成两组,每一组只与对应的输入组进行卷积计算。这样减少了连接数,从而降低了计算复杂度。

计算效率对比:

  • 普通卷积涉及 in_channels * out_channels 个卷积核的计算,而组卷积会将通道分组,因此计算量相对降低。

  • Group Convolution 是深度可分离卷积的基础思想,进一步分组到每个通道就是 Depthwise Convolution。ResNeXt 等网络通过组卷积优化了网络性能。

总结

组卷积的实现非常简单,主要通过 groups 参数来控制通道的分组,减少计算量和参数量,同时提高卷积层的效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值