P1455 搭配购买

本文介绍了一个关于母亲节礼物选择的问题,小朋友们在有限的预算下,需要在一组相互关联的云朵商品中挑选价值最大的组合。通过输入云朵的价格、价值和购买限制,使用并查集和动态规划算法来找到最大价值的解决方案。文章详细展示了算法实现过程,并给出了样例输入和输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

搭配购买

题目描述

明天就是母亲节了,电脑组的小朋友们在忙碌的课业之余挖空心思想着该送什么礼物来表达自己的心意呢?听说在某个网站上有卖云朵的,小朋友们决定一同前往去看看这种神奇的商品,这个店里有 n n n 朵云,云朵已经被老板编号为 1 , 2 , 3 , . . . , n 1,2,3,...,n 1,2,3,...,n,并且每朵云都有一个价值,但是商店的老板是个很奇怪的人,他会告诉你一些云朵要搭配起来买才卖,也就是说买一朵云则与这朵云有搭配的云都要买,电脑组的你觉得这礼物实在是太新奇了,但是你的钱是有限的,所以你肯定是想用现有的钱买到尽量多价值的云。

输入格式

第一行输入三个整数, n , m , w n,m,w n,m,w,表示有 n n n 朵云, m m m 个搭配和你现有的钱的数目。

第二行至 n + 1 n+1 n+1 行,每行有两个整数, c i , d i c_i,d_i ci,di,表示第 i i i 朵云的价钱和价值。

n + 2 n+2 n+2 n + 1 + m n+1+m n+1+m 行 ,每行有两个整数 u i , v i u_i,v_i ui,vi。表示买第 u i u_i ui 朵云就必须买第 v i v_i vi 朵云,同理,如果买第 v i v_i vi 朵就必须买第 u i u_i ui 朵。

输出格式

一行,表示可以获得的最大价值。

样例 #1

样例输入 #1

5 3 10
3 10
3 10
3 10
5 100
10 1
1 3
3 2
4 2

样例输出 #1

1

提示

  • 对于 30 % 30\% 30% 的数据,满足 1 ≤ n ≤ 100 1 \le n \le 100 1n100
  • 对于 50 % 50\% 50% 的数据,满足 1 ≤ n , w ≤ 1 0 3 1 \le n, w \le 10^3 1n,w103 1 ≤ m ≤ 100 1 \le m \le 100 1m100
  • 对于 100 % 100\% 100% 的数据,满足 1 ≤ n , w ≤ 1 0 4 1 \le n, w \le 10^4 1n,w104 0 ≤ m ≤ 5 × 1 0 3 0 \le m \le 5 \times 10^3 0m5×103
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int maxn = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 1e9 + 10;
const int N = 1e6;
int n,m,w;
struct node{
    int c;//价钱
    int d;//价值
}a[N];
int fa[N];
void init(){
    for(int i = 1;i <= n;i ++)
        fa[i] = i;
}
int find(int x){
    return x==fa[x]?x:(fa[x] = find(fa[x]));
}
void merge(int x,int y){
    fa[find(x)]=find(y);
}

int dp[N];

int main(){
    cin >> n >> m >> w;
    for(int i = 1;i <= n;i ++)
        cin >> a[i].c >> a[i].d;

    init();


    int x,y;
    for(int i = 1;i <= m;i ++){
        cin >> x >> y;
        merge(x,y);
    }

    for (int i = 1; i <= n; ++i) {
        if(fa[i] != i){
            a[find(i)].d+=a[i].d;
            a[find(i)].c+=a[i].c;
            a[i].c = 0;
            a[i].d = 0;
        }
    }

    for(int i = 1;i <= n;i ++)
        for(int j = w;j >=a[i].c;j--)
            dp[j] = max(dp[j],dp[j - a[i].c] + a[i].d);
    cout << dp[w] << endl;
    system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值