科学的基本手段--化繁为简

这篇博客探讨了不同学科如何通过将复杂形式分解为最基本单位来理解和解决问题,如数学中的矩阵与向量、代数中的数与方程、几何学的点与形状、物理学的力的分解以及音乐和艺术中的基本元素组合。这种化繁为简的思想是各个学科发展的基础,并在实际应用中展现出强大的威力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

所有学科的基本手段是找到一种 可以将任意复杂形式化为最基本单位的组合 的方法。

从提出矩阵的概念,到矩阵的运算。后面研究矩阵的人把矩阵分解为了向量这种基本单位,所有矩阵都可以表示成向量的组合的形式。
在这里插入图片描述
代数学是可以分解为最基本的数,比如一开始的自然数,到分数和负数,到无理数,实数,到复数。有了数的概念后引入了未知量,形成方程、函数和函数图像,进而从最简单的一元一次方程开始研究,到后来的一元二次方程等越来越复杂的方程,期间还研究了函数图像。最令人印象深刻的是,傅里叶函数将任意函数分解为一组正交函数的组合。在解一些数学题的时候,化繁为简的思想也是经常用到的。

几何学可以分解为 点、直线、线段、面和基本图形,比如边数最少的三角形,然后是正方形、矩形、梯形、平行四边形,圆形、椭圆等,进而可以表示出其他所有图形。

物理学是分为很多学科,比如力学,力学又分为几个分支,同时力还能在二维平面上分解为正交坐标系下X方向的力和Y方向的组合。

音乐是将声音分为最基本的几个音,由这几个音可以组合出所有的音乐。

绘画当然也可以分解为基本的线条,横、竖、斜线和曲线,以及线条的宽度和颜色。

不光是自然科学可以这么做,世界上中国古代的各种复杂技艺都是分解为一些最基本的招式和工序,进行组合成任意复杂形式。

将复杂形式表达为最基本单位的组合,这种方法简洁而且最容易应用,也是后续学科发展的基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值