缺失值比例

该博客介绍了如何处理数据集中缺失值的方法。首先,通过计算每列缺失值占总数量的比例来了解缺失情况。接着,使用众数填充'Age'字段的空缺。然后,删除其他含有缺失值的行。最后,将处理后的数据保存为1.csv文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd

df = pd.read_csv(r’E:\py-code\test1\MachineLearning\datas\titanic.csv’)

① 显示每个列有缺失值的比例

缺失数量/总数量

m = df.shape[0]
print(df.isnull().sum() / m)

② 将age字段使用众数做缺失值填充

print(df[‘Age’].mode())
df[‘Age’] = df[[‘Age’]].fillna(24)

print(df[‘Age’])

③ 将其他有缺失数据删除

df.dropna(inplace=True)

④ 将处理后的数据保存为1.csv

df.to_csv(‘1.csv’)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值