用 PyTorch 实现你的第一个全连接神经网络(手写数字识别)

你已经了解了 PyTorch 的张量和自动求导机制,这一次,我们将迈出构建深度学习模型的第一步:用 PyTorch 实现一个全连接神经网络来识别手写数字(MNIST 数据集)

我们将从数据准备开始,逐步构建网络结构、训练模型并评估准确率。


🧰 一、环境准备与依赖项安装

pip install torch torchvision matplotlib

📥 二、加载 MNIST 数据集(内置于 torchvision)

import torch
from torchvision import datasets, transforms
from<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风亦辰739

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值