1016: [JSOI2008]最小生成树计数
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3075 Solved: 1212
[ Submit][ Status]
Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
8
最小生成树的性质。
做这道题要明白最小生成树的两个性质:
1.两个不同的最小生成树的边权排序之后得到的序列是完全一样的。
理解:
设最小生成树有n条边,任意两棵最小生成树分别称为A, B, 如果e是一条边,用w(e)表示该边的权值。
A的边按权值递增排序后为a
1
, a
2
,
……
a
n
w(a
1
)≤w(a
2
)≤
……
w(a
n
)
B的边按权值递增排序后为b
1
, b
2
,
……
b
n
w(b
1
)≤w(b
2
)≤
……
w(b
n
)
设i是两个边列表中,第一次出现不同边的位置,a
i
≠b
i
不妨设w(a
i
)≥w(b
i
)
情形1 如果树A中包含边b
i
,则一定有j>i使得 b
i
=a
j
,事实上,这时有 w(b
i
)=w(a
j
)≥w(a
i
)
≥w(b
i
) 故 w(b
i
)=w(a
j
)=w(a
i
),在树A的边列表中交换边a
i
和 a
j
的位置并不会影响树A的边权有序
列表,两棵树在第i个位置的边变成同一条边。
情形2 树A中并不包含边b
i,则把b
i加到树A上,形成一个圈,由于A是最小生成树,这个圈里任意一条边的权值都不大于w(b
i
) ,另外,这个圈里存在边a
j不在树B中。因此,有w(a
j
)≤w(b
i
),且
j>i (因为a
j不在B中)。于是,有w(b
i
)≤w(a
i
)≤w(a
j
)≤w(b
i
),因此
w(a
i
)= w(a
j
) = w(b
i
)。那么在树A中把a
j换成b
i仍然保持它是一棵最小生成树,并不会影响树A的边权有序列表,并且转换成情形1。
2.相同权值的边算完之后树的连通性是一样的。
若连通性不同,说明还可以往进加当前权值的边啊,那就是没算完。
根据这两个性质,用乘法原理,dfs就可以了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#define mod 31011
using namespace std;
int tot=0,cnt=0,n,m,f[105],sum=0,ans=1;
struct edge
{
int x,y,v;
}e[1005];
struct data
{
int l,r,v;
}a[1005];
bool cmp(edge a,edge b)
{
return a.v<b.v;
}
int Getfather(int x)
{
if (x==f[x]) return x;
return Getfather(f[x]);
}
void dfs(int x,int now,int k)
{
if (now==a[x].r+1)
{
if (k==a[x].v) sum++;
return;
}
int f1=Getfather(e[now].x),f2=Getfather(e[now].y);
if (f1!=f2)
{
f[f1]=f2;
dfs(x,now+1,k+1);
f[f1]=f1;
}
dfs(x,now+1,k);
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
scanf("%d%d%d",&e[i].x,&e[i].y,&e[i].v);
sort(e+1,e+1+m,cmp);
for (int i=1;i<=n;i++)
f[i]=i;
tot=0,cnt=0;
for (int i=1;i<=m;i++)
{
int f1=Getfather(e[i].x),f2=Getfather(e[i].y);
if (e[i].v!=e[i-1].v)
{
a[cnt].r=i-1;
a[++cnt].l=i;
}
if (f1!=f2)
{
f[f1]=f2;
a[cnt].v++;
tot++;
}
}
a[cnt].r=m;
if (tot!=n-1)
{
cout<<0<<endl;
return 0;
}
for (int i=1;i<=n;i++)
f[i]=i;
for (int i=1;i<=cnt;i++)
{
sum=0;
dfs(i,a[i].l,0);
ans=(ans*sum)%mod;
for (int j=a[i].l;j<=a[i].r;j++)
{
int f1=Getfather(e[j].x),f2=Getfather(e[j].y);
if (f1!=f2)
f[f1]=f2;
}
}
cout<<ans<<endl;
return 0;
}
感悟:
1.最小生成树的这俩性质要记住~
2.这道题还可以用matrix-tree来做,用到行列式之类的
http://wenku.baidu.com/view/872eb02de2bd960590c677c6.html