问题描述
任意一个四位数,只要它们各个位上的数字是不全相同的,就有这样的规律:
1)将组成该四位数的四个数字由大到小排列,形成由这四个数字构成的最大的四位数;
2)将组成该四位数的四个数字由小到大排列,形成由这四个数字构成的最小的四位数(如果四个数中含有0,则得到的数不足四位);
3)求两个数的差,得到一个新的四位数(高位零保留)。
重复以上过程,最后一定会得到的结果是6174。
比如:4312 3087 8352 6174,经过三次变换,得到6174
1)将组成该四位数的四个数字由大到小排列,形成由这四个数字构成的最大的四位数;
2)将组成该四位数的四个数字由小到大排列,形成由这四个数字构成的最小的四位数(如果四个数中含有0,则得到的数不足四位);
3)求两个数的差,得到一个新的四位数(高位零保留)。
重复以上过程,最后一定会得到的结果是6174。
比如:4312 3087 8352 6174,经过三次变换,得到6174
输入格式
一个四位整数,输入保证四位数字不全相同
输出格式
一个整数,表示这个数字经过多少次变换能得到6174
样例输入
4312
样例输出
3
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
int a[4],b[4],ans[4];//a为一个数构成的最大数,b为最小数,ans为相减后的结果
int sub()//减法
{
int res=0;
for(int i=3;i>=0;i--)//数组a的数减数组b的数放到ans里
{
if(a[i]<b[i])
{
ans[i]=a[i]+10-b[i];
int tmp=i-1;
while(tmp>=0)
{
a[tmp]-=1;
if(a[tmp]>=0)
break;
tmp--;
}
}
else
ans[i]=a[i]-b[i];
}
for(int i=0;i<4;i++)//将ans结果化为整数
{
for(int j=0;j<3-i;j++)
ans[i]*=10;
res+=ans[i];
}
return res;//返回这一整数值
}
int cmp(int a,int b)
{
return a>b;
}
int main()
{
int n,k=0;
cin>>n;
while(n!=6174)
{
for(int i=3;i>=0;i--)//将一整数放到数组里
{
a[i]=b[i]=n%10;
n/=10;
}
sort(a,a+4,cmp);//最大数放到a数组里
sort(b,b+4);//最小数放到b数组里
n=sub();
k++;
}
cout<<k<<endl;
return 0;
}