题目描述:
整数数组 nums 按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。
给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。
题解:使用二分查找
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1;
int k;
int flag = 0;
if(nums.size() == 1)
{
if(nums[0] == target)
{
return 0;
}
else
{
return -1;
}
}
while(left < right)
{
if(nums[left] < nums[left + 1])
{
left++;
}
else
{
flag = 1;
k = left+1;
break;
}
if(nums[right] > nums[right-1])
{
right--;
}
else
{
flag = 1;
k = right;
break;
}
}
if(flag==0&&target>=nums[0]&&target<=nums[nums.size()-1])
{
int l = 0;
int r = nums.size()-1;
while(l<=r)
{
if(nums[l] == target)
{
return l;
}
else
{
l++;
}
if(nums[r] == target)
{
return r;
}
else
{
r--;
}
}
return -1;
}
if(target<=nums[nums.size()-1]&&target>=nums[k])
{
int l = k;
int r = nums.size()-1;
while(l<=r)
{
if(nums[l] == target)
{
return l;
}
else
{
l++;
}
if(nums[r] == target)
{
return r;
}
else
{
r--;
}
}
return -1;
// return k + target - nums[k];
}
else if(nums[0] <=target &&target <= nums[k-1])
{
int l = 0;
int r = k-1;
while(l<=r)
{
if(nums[l] == target)
{
return l;
}
else
{
l++;
}
if(nums[r] == target)
{
return r;
}
else
{
r--;
}
}
return -1;
// return target - nums[0];
}
return -1;
}
};