n^2的时间复杂度肯定会爆炸,所以我们要考虑更优的做法。
这里可以写一个check函数,记录c数组里大于等于x的数的个数。而统计这个需要枚举i来得到a[i],然后进行二分查找b数组,方法就是寻找最小的大于等于某个数的数。注意到达边界条件时要特判,来决定这一段区间的长度。处理完check函数后我们就可以枚举1-a[n]*b[n](a、b数组已经从小到大排好序了),再次二分,如果某个数(mid+1)大于等于k,就让左区间等于mid+1,否则右区间等于mid,最后输出答案即可。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cmath>
#define ll long long
using namespace std;
const int maxn=50010;
int n,k;
int a[maxn],b[maxn];
ll check(ll x)
{
ll ans=0;
for(int i=1;i<=n;i++)
{
int l=1,r=n;
while(l!=r)
{
int mid=(l+r)/2;
if((ll)a[i]*b[mid]>=x) r=mid;
else l=mid+1;
}
if(l==1||l==n)
{
if((ll)a[i]*b[l]>=x) ans+=n-l+1;
else ans+=n-l;
}
else ans+=n-l+1;
}
return ans;
}
int main()
{
scanf("%d %d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%d %d",&a[i],&b[i]);
}
sort(a+1,a+n+1);
sort(b+1,b+n+1);
ll l=1,r=(ll)a[n]*b[n];
while(l!=r)
{
ll mid=(l+r)/2;
if(check(mid+1)>=k) l=mid+1;
else r=mid;
}
printf("%lld",l);
return 0;
}