假设检验之p值(probability value)

假设检验中的p值是衡量观察结果与原假设之间不一致程度的概率,它提供了比传统拒绝域更精确的决策信息。p值越小,拒绝原假设的证据越强。在统计决策中,可以直接用p值作为显著性水平,或者与预设显著性水平对比来做决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设检验与参数估计时统计推断的两个组成部分,它们都是利用样本对总体进行某种推断,但推断的角度不同。

参数估计是在总体参数未知的前提下,通过样本统计统计量估计参数的方法,得到总体参数的一个点估计或区间估计。而假设检验是,根据以往的经验先给出总体参数值的一个假设,然后通过现有的样本信息去检验这个假设是否成立。

关于假设检验过程中的原假设、备择假设、单侧检验及双侧检验等内容都比较容易理解。这里重点讨论一下对于p值的理解。

为什么要用p值

从p值的英文概念——probability value——很容易理解它是某一种概率的值,这个概率的具体含义是什么?要说明这个概率的含义,我们先说明假设检验的流程,首先提出原假设和备择假设;其次,确定适当的检验统计量(如z统计量、t统计量或F统计量),并计算器数值,这一步会选定一个置信水平即α(如α=0.05或α=0.01);最后进行统计决策,决策的依据是根据样本计算出的统计量与选定置信水平下的值进行比较,然后决定是接受原假设还是拒绝原假设。

从假设检验的流程可以看出,根据检验统计量落入的区域做出是否拒绝原假设。然而当置信水平α确定后,拒绝域的位置也就确定了,这样就可以方便的进行决策,然而这个决策不够精确。假设置信水平α=0.05的统计量值zα/2=1.96,根据某个样本计算的的统计量z=2.5,落入拒绝域,我们拒绝原假设,并指导犯弃真错误的概率为0.05;如果另一个样本计算的统计量z=2.0,同样落入拒绝域,我们拒绝原假设面临的风险也是0.05。而0.05是一个通用的风险概率,这是用域表示的缺陷&

统计学中,二项分布是一种离散概率分布,适用于固定次数(n次)独立实验中成功次数的概率分布,其中每次实验的成功概率是相同的(记为p)。假设检验统计推断中的一种方法,用于检验关于总体参数的假设是否成立。 在MATLAB中,可以使用`binopdf`函数来计算二项分布的概率质量函数(probability mass function, PMF),以及`binocdf`函数来计算累积分布函数(cumulative distribution function, CDF)。此外,MATLAB提供了`binofit`函数用于估计二项分布参数,以及`binoinv`函数用于计算二项分布的逆累积分布函数。 进行假设检验时,通常需要设定原假设和备择假设,例如: - 原假设H0:总体成功概率p = p0(某个特定- 备择假设H1:总体成功概率p ≠ p0(双侧检验) 或者 - 备择假设H1:总体成功概率p > p0(右侧检验) 或者 - 备择假设H1:总体成功概率p < p0(左侧检验) 接下来,根据设定的显著性水平(alpha),计算检验统计量(比如成功次数X),并用适当的二项分布函数来计算得到观察X的概率或者X大于(或小于)观察的概率。如果这个概率小于或等于显著性水平,那么拒绝原假设。 以下是一个简单的MATLAB代码示例,演示如何使用二项分布进行假设检验: ```matlab % 假设参数 n = 100; % 实验次数 p0 = 0.5; % 原假设的成功概率 x = 60; % 观察到的成功次数 % 计算检验统计量的概率 p_value = 1 - binocdf(x, n, p0); % 设定显著性水平 alpha = 0.05; % 做出决策 if p_value <= alpha fprintf('拒绝原假设H0,因为p_value (%.4f) <= alpha (%.4f)\n', p_value, alpha); else fprintf('不拒绝原假设H0,因为p_value (%.4f) > alpha (%.4f)\n', p_value, alpha); end ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值