代码随想录一刷day39

文章主要介绍了两个力扣编程挑战,62.不同路径和63.不同路径II。这两个问题都涉及使用动态规划解决网格上从起点到终点的不同路径数量。在第一题中,路径没有障碍;而在第二题中,路径中包含障碍格子,需要考虑避开。解题方法是初始化二维数组并基于之前的状态计算当前位置的路径数。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

一、力扣62.不同路径

1, 明确dp数组及其下标含义
2, 确定递归关系
3, dq数组初始化
4, 确定遍历顺序
5, 打印dq数组,找几个例子试一下

class Solution {
    public int uniquePaths(int m, int n) {
        int[][] dq = new int[m][n];
        for(int i = 0; i < m; i ++){
            dq[i][0] = 1;
        }
        for(int i = 0; i < n; i ++){
            dq[0][i] = 1;
        }
        for(int i = 1; i < m; i ++){
            for(int j = 1; j < n; j ++){
                dq[i][j] = dq[i][j-1] + dq[i-1][j];
            }
        }
        return dq[m-1][n-1];
    }
}

二、力扣63. 不同路径 II

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int len = obstacleGrid.length;
        int col = obstacleGrid[0].length;
        int[][] dq = new int[len][col];
        for(int i = 0; i < len && obstacleGrid[i][0] != 1; i ++){
            dq[i][0] = 1;
        }
        for(int i = 0; i < col && obstacleGrid[0][i] != 1; i ++){
            dq[0][i] = 1;
        }
        for(int i = 1; i < len; i ++){
            for(int j = 1; j < col; j ++){
                if(obstacleGrid[i][j] == 1){
                    dq[i][j] = 0;
                }else{
                    dq[i][j] = dq[i][j-1] + dq[i-1][j];
                }
            }
        }
        return dq[len-1][col-1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

乱世在摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值