题目
我们都知道,人类算术通常用十进制表示。但是奶牛可以超十进制表示一个正整数N,具体表示形式如下:
N=dk10k+dk-110k-1+...+d0100(dk≠0,并且对所有的i,di∈{0,1,2,...,10}
比如N=10有两种超十进制表示:10=10·100,和人类通常的十进制表示:10=1·101+0·100。
输入
多组测试数据,每组一行有一个正整数M(1≤M≤1016)。
输出
计算在区间[1,M]有多少个正整数可以有唯一的超十进制表示。对每组测试在单独一行中输出这个数。
Key:
唯一数:各个位上都不含有0.
例如234,先考虑200以内的唯一数 (2-1)*9*9+9*9+9=171;
再考虑百位固定为2的唯一数 (3-1 )*9+4=22
171+22=193
#include <iostream>
#include <cstring>
using namespace std;
int main()
{
unsigned long long n;
while(cin>>n)
{
unsigned long long p=n;
int t=1,a[20];
unsigned long long sum=0,ans=0;
memset(a,0,sizeof(a));
while(n!=0) //数组a用来记录各个位上的数字,t表示位数+1;
{
a[t]=n%10;
t++;
n/=10;
}
unsigned long long m=1;
for(int i=t-2; i>=1; i--)
{
unsigned long long x=1;
for(int j=1; j<=i; j++)
{
x*=9;
}
if(i==t-2) sum=sum+a[t-1]*x;
else
sum+=x;
}
for(int i=t-2;i>=1;i--)
{
if(a[i]==0) break;
unsigned long long y=1;
for(int j=1;j<i;j++)
{
y*=9;
}
if(i==1) sum=sum+a[i]*y;
else sum=sum+(a[i]-1)*y;
}
if(p>=10) ans=sum;
else ans=p;
cout<<ans<<endl;
}
return 0;
}