1、题目描述
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
2、示例
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
3、题解
- 中位数定义:中位数,是按顺序排列的一组数据中居于中间位置的数,即在这组数据中,中位数的左边所有数比它小,右边所有数比它大。也就是说,中位数把一个集合划分为长度相等的两个子集,一个子集的元素问题大于另一个子集。
- 题目分析:那么就可以用i标记数组a下标,j标记数组b下标,i+j把数组a、b分成了两半,即a[0]到a[i-1]和b[0]到b[j-1]个数之和i+j等于m+n+1的一半。i+j=(m+n+1)/2始终保存以i为界限的左边和以j为界限的右边个数之和等于m+n+1的一半,也就是a[0]到a[i-1]和b[0]到b[j-1]个数之和等于m+n+1的一半。
- 满足的条件:保证i+j把数组a、b分成了两半情况下,即a[0]到a[i-1]和b[0]到b[j-1]个数之和i+j等于m+n+1的一半,同时必须使得a[i-1]<=b[j]和b[j-1]<=a[i],才满足中位数的性质,即中位数的左边小于中位数的右边。
- 代码求解过程:然后通过折半查找找到满足以上条件的i,j=(m+n+1)/2-i,当m+n等于奇数,中位数就是第i+j=(m + n + 1) / 2个,因为a的左边是a[0]到a[i-1]共i个元素,b的左边是b[0]到b[j-1]共j个元素,所以第i+j大元素就是max(a[i-1],a[j-1])=max_of_left当m+n等于偶数,中位数就是第i+j=(m + n + 1) / 2和i+j+1大值的平均,因为a的左边是a[0]到a[i-1]共i个元素,b的左边是b[0]到b[j-1]共j个元素,所以第i+j大元素就是max(a[i-1],a[j-1])=max_of_left,i的右边最小的是a[i],j的右边最小的是b[j],所以第i+j+1大元素就是min(a[i],b[j])=min_of_right。
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
class Solution {
public:
double findMedianSortedArrays(vector<int>& a, vector<int>& b) {
//简化版:half_len必须是(a.size()+b.size()+1)/2以及iright=a.size(),
//因为如果m+n是奇数,那么中位数就是max_left=max(a[i-1],b[j-1]),刻意将中位数放在左边
//如果m+n是偶数,那么中位数就是(max_left+min_right)/2.0,min_right=min(a[i],b[j])
if(a.size()>b.size())
return findMedianSortedArrays(b,a);
int ileft=0,iright=a.size(),half_len=(a.size()+b.size()+1)/2;
int max_left,min_right,i,j;
while(ileft<=iright)
{
i=(ileft+iright)/2;
j=half_len-i;
if(i>0&&a[i-1]>b[j])
iright=i-1;
else if(i<a.size()&&a[i]<b[j-1])
ileft=i+1;
else
{
if(i==0)
max_left=b[j-1];
else if(j==0)
max_left=a[i-1];
else
max_left=max(a[i-1],b[j-1]);
if((a.size()+b.size())&1)
return max_left;
if(i==a.size())
min_right=b[j];
else if(j==b.size())
min_right=a[i];
else
min_right=min(a[i],b[j]);
return (max_left+min_right)/2.0;
}
}
return -1;
}
};
class Solution1 {
public:
double findMedianSortedArrays(vector<int>& a, vector<int>& b) {
int imin, imax, half_len; //imin和imax用于折半查找数组a中的i
int max_of_left, min_of_right; //max_of_left中位数左边最大值,min_of_right右边最小值
int m = a.size(), n = b.size();
int i, j; //i标记数组a下标,j标记数组b下标,i+j把数组a、b分成了两半,即a[0]到a[i-1]和b[0]到b[j-1]个数之和i+j等于m+n+1的一半
//交换a和b,使得length(a)<=length(b),即m<=n,防止j=(m+n+1)/2-i<0情况发生
if (m > n) {
swap(a, b);
swap(m, n);
}
imin = 0;
imax = m;
half_len = (m + n + 1) / 2; //下取整
while (imin <= imax) {
i = (imin + imax) / 2; //折半查找,找到满足要求的i使得a[i-1]<=b[j]和b[j-1]<=a[i],且i+j=(m+n+1)/2
j = half_len - i; //因为中位数是最中间的数,所以i+j=(m+n+1)/2始终保存以i为界限的左边和以j为界限的右边个数之和等于m+n+1的一半,也就是a[0]到a[i-1]和b[0]到b[j-1]个数之和等于m+n+1的一半
//保证i+j把数组a、b分成了两半情况下,即a[0]到a[i-1]和b[0]到b[j-1]个数之和i+j等于m+n+1的一半
//必须使得a[i-1]<=b[j]和b[j-1]<=a[i],才满足中位数的性质,即中位数的左边小于中位数的右边
//如果b[j-1] > a[i]说明i小了,imin=i+1
if (i < m && b[j-1] > a[i]) {
imin = i + 1;
}
//如果a[i-1] > b[j]说明i大了,iman=i-1
else if (i > 0 && a[i-1] > b[j]) {
imax = i - 1;
}
//找到i满足a[i-1]<=b[j]和b[j-1]<=a[i],且i+j=(m+n+1)/2
else {
//找到左边的最大值max(a[i-1], b[j-1]),可能i=0,数组a无左边值;j=0,数组b无左边值
if (i == 0)
max_of_left = b[j - 1];
else if (j == 0)
max_of_left = a[i - 1];
else
max_of_left = max(a[i - 1], b[j - 1]);
//当m+n等于奇数,中位数就是第i+j=(m + n + 1) / 2个,因为a的左边是a[0]到a[i-1]共i个元素,b的左边是b[0]到b[j-1]共j个元素,所以第i+j大元素就是max(a[i-1],a[j-1])=max_of_left
if ((m + n) % 2==1)
return max_of_left;
//找到右边的最小值min(a[i], b[j]),可能i-1=m-1,数组a无右边值;j-1=n-1数组b无右边值
if (i == m)
min_of_right = b[j];
else if (j == n)
min_of_right = a[i];
else
min_of_right = min(a[i], b[j]);
//当m+n等于偶数,中位数就是第i+j=(m + n + 1) / 2和i+j+1大值的平均
//因为a的左边是a[0]到a[i-1]共i个元素,b的左边是b[0]到b[j-1]共j个元素,所以第i+j大元素就是max(a[i-1],a[j-1])=max_of_left,i的右边最小的是a[i],j的右边最小的是b[j],所以第i+j+1大元素就是min(a[i],b[j])=min_of_right
return ((max_of_left + min_of_right) / 2.0);
}
}
return -1;
}
};
int main()
{
Solution solute;
vector<int> a = { 1, 3 };
vector<int> b = { 2 };
cout << solute.findMedianSortedArrays(a, b);
return 0;
}