1、题目描述
给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
2、示例
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
3、题解
基本思想:找规律,模拟旋转过程,从外往内一层一层循转总共层数为matrix.size()/2,每一层数字个数为(k-1)*4,循环k-1次,每次循转4个数字
- 从外往内一层一层循转总共层数为matrix.size()/2,每一层数字个数为(k-1)*4
- 每一层数字个数为(k-1)*4,对每一层循环k-1次
- 每次循转4个数字,四个数字坐标如下i/2为层数,j为该层第几个数字,精准获取每一层数字的坐标,当前层的左上角坐标是matrix[i/2][i/2],右上角坐标是matrix[i/2][matrix.size()-1-i/2],左下角坐标是matrix[matrix.size()-1-i/2][i/2],右下角坐标是matrix[matrix.size()-1-i/2][matrix.size()-1-i/2]。
#include<iostream>
#include<vector>
using namespace std;
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
//先上下翻转然后对角翻转
int n = matrix.size();
for(int i = 0; i < n / 2; i++)
swap(matrix[i],matrix[n-1-i]);
for(int i = 0; i < n; i++) {
for(int j = i; j < n; j++) {
swap(matrix[i][j], matrix[j][i]);
}
}
}
};
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
//基本思想:找规律,模拟旋转过程,从外往内一层一层循转总共层数为matrix.size()/2,每一层数字个数为(k-2)*4,循环k-2次,每次循转4个数字
int i, j, temp, k;
if (matrix.size() == 1 || matrix.size() == 0)
return;
//从外往内一层一层循转总共层数为matrix.size()/2,每一层数字个数为(k-2)*4
for (i = 0, k = matrix.size(); i != matrix.size() - 1 && i != matrix.size(); i = i + 2, k = k - 2)
{
//每一层数字个数为(k-2)*4,对每一层循环k-2次
for (j = 0; j < k-1; j++)
{
//每次循转4个数字,四个数字坐标如下i/2为层数,j为该层第几个数字
temp = matrix[i / 2][i / 2 + j];
matrix[i / 2][i / 2 + j] = matrix[matrix.size() - 1 - i / 2 - j][i / 2];
matrix[matrix.size() - 1 - i / 2 - j][i / 2] = matrix[matrix.size() - 1 - i / 2][matrix.size() - 1 - i / 2 - j];
matrix[matrix.size() - 1 - i / 2][matrix.size() - 1 - i / 2 - j] = matrix[i / 2 + j][matrix.size() - 1 - i / 2];
matrix[i / 2 + j][matrix.size() - 1 - i / 2] = temp;
}
}
return;
}
};
int main()
{
Solution solute;
vector<vector<int>> matrix = { {1,2,3,4,5,6},{7,8,9,10,11,12},{13,14,15,16,17,18},{19,20,21,22,23,24},{25,26,27,28,29,30},{31,32,33,34,35,36} };
solute.rotate(matrix);
for (int i = 0; i < matrix.size(); i++)
{
for (int j = 0; j < matrix[i].size(); j++)
cout << matrix[i][j] << " ";
cout << endl;
}
return 0;
}