1、题目描述
在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。
2、示例
输入:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
输出: 4
3、题解
解法一:
基本思想:动态规划,dp[i][j]表示如果当前位置加入组成的正方形的边长。扫描matrix矩阵每个元素,如果该位置的值是1,则dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的dp值决定。,当前位置的元素值等于三个相邻位置的元素中的最小值加1,状态转移方程如下:dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1。
解法二:
基本思想:广度优先搜索,扫描matrix矩阵中每一个元素,如果是1,则向右向下向右下三个方向广度优先搜索,检查三个方向元素是否都为1,这三个方向元素入队列,继续广搜。
#include<iostream>
#include<vector>
#include<algorithm>
#include<deque>
using namespace std;
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
//基本思想:广度优先搜索,扫描matrix矩阵中每一个元素
//如果是1,则向右向下向右下三个方向广度优先搜索,检查三个方向元素是否都为1,这三个方向元素入队列,继续广搜
int res = 0;
for (int i = 0; i < matrix.size(); i++)
{
for (int j = 0; j < matrix[0].size(); j++)
{
if (matrix[i][j] == '1')
{
int len = 1;
res = max(res, len);
deque<pair<int, int>> queue;
queue.push_front({ i,j });
while (!queue.empty())
{
int queuelen = queue.size();
while(queuelen)
{
pair<int, int> temp = queue.back();
queue.pop_back();
if (check(matrix, temp.first, temp.second))
{
queue.push_front({ temp.first + 1,temp.second });
queue.push_front({ temp.first,temp.second + 1 });
queue.push_front({ temp.first + 1,temp.second + 1 });
}
else
break;
queuelen--;
}
if (queuelen == 0)
{
len++;
res = max(res, len);
}
else
break;
}
}
}
}
return res * res;
}
bool check(vector<vector<char>>& matrix, int i, int j)
{
if (j + 1 < matrix[0].size() && matrix[i][j + 1] == '1' && i + 1 < matrix.size() && matrix[i + 1][j] == '1'&& matrix[i + 1][j+1] == '1')
return true;
return false;
}
};
class Solution1 {
public:
int maximalSquare(vector<vector<char>>& matrix) {
//基本思想:动态规划,dp[i][j]表示如果当前位置加入组成的正方形的边长
//如果该位置的值是1,则dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的dp值决定。
//当前位置的元素值等于三个相邻位置的元素中的最小值加1,状态转移方程如下:
//dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1
if (matrix.size() == 0)
return 0;
int res = 0;
vector<vector<int>> dp(matrix.size(), vector<int>(matrix[0].size(), 0));
for (int i = 0; i < matrix.size(); i++)
{
for (int j = 0; j < matrix[0].size(); j++)
{
if (matrix[i][j] == '1')
{
if (i == 0 || j == 0)
dp[i][j] = 1;
else
dp[i][j] = min(dp[i - 1][j], min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;
res = max(res, dp[i][j]);
}
}
}
return res * res;
}
};
int main()
{
Solution solute;
vector<vector<char>> matrix = {
{'0', '0', '0', '1'},
{'1', '1', '0', '1'},
{'1', '1', '1', '1'},
{'0', '1', '1', '1'},
{'0', '1', '1', '1'}
};
cout << solute.maximalSquare(matrix) << endl;
return 0;
}