Apache Calcite - 将Sql转换为关系表达式

将Sql转换为关系表达式

上篇文章介绍了手工构造的方式创建关系表达式,也介绍了关系表达式的作用,这次将介绍如何通过Calcite提供的工具将Sql转换为关系表达式

Sql转换为关系表达式可以总结为如下的步骤

  1. 设置内存数据库连接
  2. 创建自定义Schema
  3. 添加表到自定义Schema
  4. 配置SQL解析器
  5. 配置框架
  6. 创建Planner实例
  7. 解析SQL
  8. 验证SQL
  9. 转换为关系表达式
  10. 获取RelNode

样例代码如下:

public class SqlToRelNode {
    /**
     * 创建配置的时候应该建什么配置
     * Sql转关系代数表达式
     */
    @Test
    public void testSqlToRelNode() throws Exception{
        // 1. 设置内存数据库连接
        Properties info = new Properties();
        Connection connection = DriverManager.getConnection("jdbc:calcite:", info);
        CalciteConnection calciteConnection = connection.unwrap(CalciteConnection.class);

        // 2. 创建自定义Schema
        SchemaPlus rootSchema = calciteConnection.getRootSchema();
        Schema schema = new AbstractSchema() {};
        rootSchema.add("MY_SCHEMA", schema);

        // 3. 添加表到自定义Schema
        Table yourTable = new AbstractTable() {
            @Override
            public RelDataType getRowType(RelDataTypeFactory typeFactory) {
                // 如果要动态分析表,那么就自己去创建
                return typeFactory.builder()
                    .add("id", typeFactory.createJavaType(int.class))
                    .add("name", typeFactory.createJavaType(String.class))
                    .build();
            }
        };
        rootSchema.getSubSchema("MY_SCHEMA").add("your_table", yourTable);
        // 4. 配置SQL解析器
        SqlParser.Config parserConfig = SqlParser.config()
            .withLex(Lex.MYSQL)
            .withConformance(SqlConformanceEnum.MYSQL_5);
        // 5. 配置框架
        FrameworkConfig config = Frameworks.newConfigBuilder()
            .parserConfig(parserConfig)
            .defaultSchema(rootSchema.getSubSchema("MY_SCHEMA")) // 使用自定义Schema
            .build();
        // 6. 创建Planner实例
        Planner planner = Frameworks.getPlanner(config);
        // 7. 解析SQL
        String sql = "SELECT * FROM your_table";
        SqlNode sqlNode = planner.parse(sql);
        // 8. 验证SQL
        SqlNode validatedSqlNode = planner.validate(sqlNode);
        // 9. 转换为关系表达式
        RelRoot relRoot = planner.rel(validatedSqlNode);
        // 10. 获取RelNode
        RelNode rootRelNode = relRoot.rel;

        // 打印RelNode的信息
        System.out.println(rootRelNode.explain());
        // 关闭连接
        connection.close();
    }
}

输出结果

LogicalProject(id=[$0], name=[$1])
  LogicalFilter(condition=[=(CAST($0):INTEGER NOT NULL, 1)])
    LogicalTableScan(table=[[MY_SCHEMA, your_table]])

创建自定义Schema

我们为了进行转换创建了自定义Schema,用过Sql解析都知道Sql解析时不需要Schema,而验证转换为关系表达式时需要schema。解析是将SQL字符串转换为抽象语法树(AST)的过程,这个过程只需要了解SQL的语法规则,不需要知道具体的表和字段。解析的结果是一个 SqlNode 对象,它表示SQL语句的结构。

解析器根据SQL语法规则将SQL字符串解析成SqlNode。这个过程只涉及语法分析,不涉及具体的表和字段,因此不需要Schema信息。

转换为关系表达式是将SqlNode 转换为关系表达式(RelNode)的过程,这个过程也依赖于Schema信息,因为关系表达式需要具体的表和字段信息来生成正确的执行计划。
在依赖RelNod执行优化时需要知道类型,例如根据索引选择查询优化,投影与计算合并。

为了实现通用化的方案需要读取元信息来自动创建schema

Planner

我们使用了Planner实例来将sql转换为关系表达式

在Apache Calcite中,org.apache.calcite.tools.Planner 是一个核心组件,用于处理SQL查询的解析、验证、优化和转换。它提供了一系列的高层次API,简化了从SQL到关系表达式(RelNode)的转换过程。

在Apache Calcite中,org.apache.calcite.tools.Planner 是一个核心组件,用于处理SQL查询的解析、验证、优化和转换。它提供了一系列的高层次API,简化了从SQL到关系表达式(RelNode)的转换过程。以下是 Planner 的核心作用和功能:

  1. SQL解析,在这一步,Planner 使用配置的SQL解析器(SqlParser)将SQL文本解析为一个 SqlNode 对象。
    Planner 的第一个核心作用是将SQL字符串解析为一个抽象语法树(AST)。这个过程包括将SQL文本解析成Calcite的内部表示形式(SqlNode)。
SqlNode sqlNode = planner.parse(sql);
  1. SQL验证,解析后的SQL语句需要进行验证,以确保语法和语义的正确性。Planner 的验证功能会检查SQL语句的合法性,包括表和列是否存在、数据类型是否匹配等。
SqlNode validatedSqlNode = planner.validate(sqlNode);

在验证过程中,Planner 会检查SQL语句中的表、列、函数等是否存在,并且类型是否匹配。如果发现问题,会抛出相应的异常。

  1. 转换为关系表达式
    经过验证的SQL语句需要转换为关系表达式(RelNode)。关系表达式是Calcite内部用于表示查询计划的中间形式。Planner 提供了将 SqlNode 转换为 RelNode 的功能。
RelRoot relRoot = planner.rel(validatedSqlNode);
RelNode rootRelNode = relRoot.rel;

Planner 解析SQL

Planner 是一个高层次的组件,负责整个SQL处理流程,包括解析、验证、优化和生成关系表达式。它封装了多个步骤,简化了从SQL到执行计划的转换过程。

  • 高层次封装:Planner 封装了SQL解析、验证、优化和转换为关系表达式的全过程。
  • 集成多个组件:Planner 集成了 Parser、Validator、RelBuilder 等组件,提供了一站式的SQL处理接口。
  • 简化流程:通过 Planner,用户可以一次性完成从SQL解析到生成执行计划的所有步骤。
    而SqlParser仅负责SQL解析,将SQL字符串转换为 SqlNode。

总结

当需要将Sql转换为关系表达式时,可以使用Calcite提供的工具简化我们的工作

<think>好的,我需要解决用户关于在Apache Calcite 1.38.0中实现SQL空值转换的问题。首先,我需要回顾Apache Calcite的基本功能,它主要用于SQL解析和优化。用户提到的空值转换可能涉及NULL值的处理,比如在SQL查询中如何转换或处理NULL值。 根据引用内容,Apache Calcite可以与Flink集成,实现SQL查询处理。因此,用户可能是在Flink环境中使用Calcite进行SQL解析,需要处理NULL值的转换逻辑。首先,我应该考虑Calcite中处理NULL值的标准SQL方法,比如使用COALESCE、CASE WHEN或IFNULL等函数。 接下来,我需要查找Apache Calcite 1.38.0的文档或源码,确认这些函数是否支持,或者是否有特定的API用于处理NULL转换。例如,CalciteSqlParser是否支持这些函数的解析,以及在优化阶段如何处理这些表达式。 然后,用户可能需要代码示例,所以需要提供一个使用Calcite API实现NULL转换的例子。可能需要创建一个解析SQL语句的代码片段,其中包含COALESCE函数,并展示如何通过Calcite的API生成相应的逻辑计划。 另外,用户提到的空值转换可能还包括自定义转换逻辑,比如在表达式或规则中处理NULL值。这时可能需要扩展CalciteSqlOperator或实现自定义的RexCall,但需要确认1.38.0版本是否支持这些扩展方式。 还需要注意版本差异,确保提供的示例和方法适用于1.38.0,而不是其他版本。可能需要查阅该版本的发布说明或源码中的测试用例,确认相关功能的可用性。 最后,总结实现方法,包括使用内置函数和自定义处理两种途径,并给出具体的示例代码,帮助用户理解如何在他们的项目中应用这些方法。</think>在 Apache Calcite 1.38.0 中实现 SQL NULL 转换,主要通过内置函数和表达式逻辑处理。以下是具体方法和示例: --- ### 一、使用内置函数处理 NULL Calcite 支持标准 SQL 的 NULL 处理函数,例如: 1. **`COALESCE(value, default)`** 返回第一个非 NULL 值,常用于设置默认值。 ```sql SELECT COALESCE(name, 'Unknown') FROM users; ``` 2. **`NULLIF(value1, value2)`** 若两值相等则返回 NULL,否则返回第一个值。 ```sql SELECT NULLIF(salary, 0) FROM employees; -- 工资为0时返回NULL ``` 3. **`CASE WHEN` 表达式** 显式定义 NULL 转换逻辑: ```sql SELECT CASE WHEN age IS NULL THEN 18 ELSE age END FROM students; ``` --- ### 二、通过 Calcite 解析层实现 1. **自定义 `RexNode` 表达式** 在逻辑计划生成阶段,通过构建 `RexBuilder` 创建包含 NULL 转换逻辑的表达式: ```java RexBuilder rexBuilder = new RexBuilder(typeFactory); RexNode coalesceExpr = rexBuilder.makeCall( SqlStdOperatorTable.COALESCE, inputField, // 输入字段 rexBuilder.makeLiteral("N/A") // 默认值 ); ``` 2. **扩展 `SqlOperator`** 创建自定义函数处理 NULL(需注册到 `SqlValidator`): ```java public class CustomNullHandler extends SqlFunction { public CustomNullHandler() { super("HANDLE_NULL", SqlKind.OTHER_FUNCTION, ReturnTypes.VARCHAR_2000, null, OperandTypes.ANY_ANY, SqlFunctionCategory.USER_DEFINED_FUNCTION); } // 实现 eval 逻辑 public String eval(String value, String defaultValue) { return value != null ? value : defaultValue; } } ``` --- ### 三、Flink 集成示例 结合 Flink SQL 使用 Calcite 的 NULL 处理功能: ```java TableEnvironment tableEnv = TableEnvironment.create(EnvironmentSettings.inStreamingMode()); // 注册表和数据 tableEnv.executeSql("CREATE TABLE orders (product VARCHAR, quantity INT)"); // 执行包含 NULL 转换的查询 TableResult result = tableEnv.executeSql( "SELECT product, COALESCE(quantity, 0) AS qty FROM orders" ); result.print(); ``` --- ### 四、特殊场景处理 1. **聚合函数中的 NULL** 使用 `FILTER` 或 `IF` 排除 NULL 值: ```sql SELECT AVG(IF(score IS NULL, 0, score)) FROM exams; ``` 2. **JOIN 中的 NULL 安全比较** 用 `IS NOT DISTINCT FROM` 替代 `=`: ```sql SELECT * FROM t1 JOIN t2 ON t1.id IS NOT DISTINCT FROM t2.id; ``` --- ### 引用说明 Apache CalciteSQL 解析能力支持灵活处理 NULL,其优化器会自动优化包含 NULL 的表达式[^1]。自定义函数需通过扩展 `SqlOperator` 实现,并集成到 Flink 的查询流程中[^2]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值