题目链接:https://leetcode.com/problems/candy/
1.题目描述
有N个孩子站成一排,每个孩子有一个分值。现在你需要为这些孩子分配糖果,但需要满足下面的需求。
- 每个孩子至少分一个。
- 拥有较高分值的孩子得到的糖果要比与他相邻的孩子得到的数量多。
那么最少需要给这些孩子分配多少糖果?
下面的方法的时间复杂度是O(n),空间复杂度为O(1)。
2.思路分析
如果孩子当前的分值大于前一个孩子,当前孩子分得糖果数量应该是 前一个孩子分得糖果数加1。下图中cur代表当前孩子,图中上半部分对应每个孩子的分值,下半部分对应每个孩子分配的糖果数,后文中此类图形同理。
如果当前孩子的分值等于前一个孩子的分值,则当前孩子所分得糖果数量应该是1。(满足题意的前提下,分配最少糖果)
如果当前孩子的分值小于前一个孩子的,所分苹果数量需按以下几种情况分析。
孩子所具有的分值连续下降时,那么我们使用countDown来存放连续下降数。下图中,在curr位置处countDown = 2。(3-2,2-1)
如果在下降序列中,当前值等于前一个人的值或大于前一个人的值,那么不在构成下降序列,那么我们将通过数列求和公式来计算这段连续下降序列的长度。下图为等差数列求和公式。
当计算下降区间长度时,需要考虑pre变量。下图中pre为2,因此接下来的两次糖果分配数量,无法按一次递减的方式分配,因为这样,因此第2次分配的数量将会是0,而每个孩子最少要分配一个。
在这种情况下,countDown >= prew,这样我们需要修改pre位置处为孩子分配的糖果数,pre = countdown – pre + 1。修正后可以保证每个孩子至少分配一个。
3.实现代码
public int candy(int[] ratings) {
int pre = 1, countDown = 0, total = 1;
for (int i = 1; i < ratings.length; i++) {
if (ratings[i] >= ratings[i - 1]) {
if (countDown > 0) {
total += countDown * (countDown + 1) / 2;
if (countDown >= pre) {
total += countDown - pre + 1;
}
pre = 1;
countDown = 0;
}
pre = ratings[i] == ratings[i - 1] ?
1 : pre + 1; prev + 1
total += pre;
}
else {
countDown++;
}
}
if (countDown > 0) {
total += countDown * (countDown + 1) / 2;
if (countDown >= pre) {
total += countDown - pre + 1;
}
}
return total;
}
原文地址:http://www.allenlipeng47.com/blog/index.php/2016/07/21/candy/