信息学奥赛一本通 1380:分糖果(candy)

【题目链接】

ybt 1380:分糖果(candy)
可以认为小朋友间关系的最大数量为 1 0 5 10^5 105

【题目考点】

1. 图论:广搜
2. 图论:最短路径

【解题思路】

每个小朋友是一个顶点,朋友间的关系是边,糖果从每个人传到另一个人都是1秒钟的时间,因而该图是无向无权图。
假设一位小朋友A接收糖果的时刻是t,那么与该小朋友有关系的小朋友接收到糖果的时刻是t+1。由于每个小朋友吃糖的时间都是m,因而该小朋友A把糖吃完的时刻是t+m。

解法1:广搜

队列中保存的是结点,结点包括属性:小朋友编号,收到糖的时刻。一开始把结点“小朋友C在第1秒收到糖”加入队列,每次出队直到队空。把出队的小朋友u的所有有关系的未收到糖的小朋友v收到糖的时间为u收到糖的时间加1。构成结点,再入队。题目所求的结果为每个小朋友吃完糖时间的最大值。
复杂度: O ( V + E ) O(V+E) O(V+E)

解法2:求单源最短路径

可以把无权图当做每条边权值为1的带权图。
求从小朋友C出发的单源最短路径,顶点A到顶点B的路径即为将糖果从A传到B的时间。这样就可以得到每个小朋友接收到糖果的时间,加上m后即为每个小朋友吃完糖果的时间。求所有小朋友吃完糖果的时间的最大值。

关于数据量:由于顶点数n达到 1 0 5 10^5 105,边数最大为 O ( 1 0 10 ) O(10^{10}) O(1010),当然题目不会给出这么大数量的边,否则做输入的时间都不够。如果假定边的数量最大为 1 0 5 10^5 105,那么可以选择Dijkstra堆优化算法 O ( E l o g E ) O(ElogE) O(ElogE)和SPFA算法 O ( k E ) O(kE) O(kE)

【题解代码】

解法1:广搜算法
#include <bits/stdc++.h>
using namespace std;
#define N 100005
struct Node
{
	int v, t;//v:顶点编号 t:糖果到达该顶点的时间 
};
int n, p, c, m, mxTime;//mxTime:所有小朋友中吃完糖果时间的最大值 
vector<int> edge[N];
bool vis[N];//vis[i]:顶点i是否已分过糖果 
void bfs(int sv)
{
	queue<Node> que;
	vis[sv] = true;
	que.push(Node{sv, 1});
	while(!que.empty())
	{
		int u = que.front().v, t = que.front().t;
		que.pop();
		mxTime = max(mxTime, t+m);//接收糖果时间为t的小朋友,吃完糖的时间为t+m 
		for(int v : edge[u])
		{
			if(!vis[v])
			{
				vis[v] = true;
				que.push(Node{v, t+1});
			}
		}
	}
}
int main()
{
	int f, t;
	cin >> n >> p >> c >> m;
	for(int i = 1; i <= p; ++i)
	{
		cin >> f >> t;
		edge[f].push_back(t);
		edge[t].push_back(f);
	}
	bfs(c);
	cout << mxTime;
	return 0;
}
解法2:Dijkstra堆优化算法
#include <bits/stdc++.h>
using namespace std;
#define N 100005
#define INF 0x3f3f3f3f
struct Pair
{
    int u, d;//u:顶点 d:距离 
    Pair(){}
    Pair(int a, int b):u(a),d(b){}
    bool operator < (const Pair &b) const//优先队列中 d更小的更优先 
    {
        return b.d < d;
    }
};
int n, p, c, m, mxTime;//mxTime:顶点c单源最短路径中的最大值,即传递时间的最大值 
vector<int> edge[N];
bool vis[N];//vis[i]:顶点i是否在队列中
int dis[N];//dis[i]:糖从起点传到顶点i的时间 
void dijkstra(int sv)//sv起始点 
{
    priority_queue<Pair> pq;//优先队列中 d更小的更优先 
	memset(dis, 0x3f, sizeof(dis));//dis初始值为INF
	dis[sv] = 0;
	pq.push(Pair(sv, 0));
	while(pq.empty() == false)
	{
	    int u = pq.top().u;
	    pq.pop();
	    if(vis[u])//如果顶点u已经访问过,则跳过 
	       continue;
	    vis[u] = true;
		for(int v : edge[u])
		{
			if(vis[v] == false && dis[v] > dis[u]+1)
			{
				dis[v] = dis[u]+1; 
				pq.push(Pair(v, dis[v]));
			}
		}
    }
}
int main()
{
	int f, t;
	cin >> n >> p >> c >> m;
	for(int i = 1; i <= p; ++i)
	{
		cin >> f >> t;
		edge[f].push_back(t);
		edge[t].push_back(f);
	}
	dijkstra(c);
	for(int i = 1; i <= n; ++i)
		if(dis[i] != INF && mxTime < dis[i])
			mxTime = dis[i];
	cout << 1+mxTime+m;//起始位置时间为1,传到最后一个接收的小朋友的时间为1+mxTime,吃糖用m时间,吃完时间为1+mxTime+m 
	return 0;
}
解法3:SPFA算法
#include <bits/stdc++.h>
using namespace std;
#define N 100005
#define INF 0x3f3f3f3f
int n, p, c, m, mxTime;//mxTime:顶点c单源最短路径中的最大值,即传递时间的最大值 
vector<int> edge[N];
bool vis[N];//vis[i]:顶点i是否在队列中
int dis[N];//dis[i]:糖从起点传到顶点i的时间 
void spfa(int sv)
{
	memset(dis, 0x3f, sizeof(dis));
	queue<int> que;
	que.push(sv);
	vis[sv] = true;
	dis[sv] = 0;
	while(que.empty() == false)
	{
		int u = que.front();
		que.pop();
		vis[u] = false;
		for(int v : edge[u])
		{
			if(dis[v] > dis[u]+1)
			{
				dis[v] = dis[u]+1;
				if(vis[v] == false)
				{
					que.push(v);
					vis[v] = true;
				}
			}
		}
	}
}
int main()
{
	int f, t;
	cin >> n >> p >> c >> m;
	for(int i = 1; i <= p; ++i)
	{
		cin >> f >> t;
		edge[f].push_back(t);
		edge[t].push_back(f);
	}
	spfa(c);
	for(int i = 1; i <= n; ++i)
		if(dis[i] != INF && mxTime < dis[i])
			mxTime = dis[i];
	cout << 1+mxTime+m;//起始位置时间为1,传到最后一个接收的小朋友的时间为1+mxTime,吃糖用m时间,吃完时间为1+mxTime+m 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值